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Overview

This is a research (in progress) in collaboration with Hitoshi Ishii (
Tsuda University).

We propose a generalization of a recent result by

I A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique
Inventiones 2016

about the asymptotic behavior as the discount factor � goes to 0
of a family of (viscosity ) solutions to the Hamilton–Jacobi
equations

� u + H(x ,Du) = c � > 0, suitable c

The result of DFIZ is given for equations defined on a compact
manifold, say the flat torus TN , while we study the same problem
in the whole Euclidean space RN .
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More importantly, the methods we use are di↵erent of those in
DFIZ.

They rely on some functional analysis and appropriate duality
principles between spaces of Lagrangians and spaces of measures.

We do not employ representation formulae for solutions of the
discounted problems or property of curves in the space of state
variable.

We think that this alternative approach is interesting per se and
can be handled to generalize the asymptotic result to more
general setting, for instance in the case of fully nonlinear
second order equations.
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Our approach is a development of a method introduced in

I Mitake, Ishii, Tran 2016

and used to address the vanishing discount problem for some
second order equations

Other reference is

I Gomes 2005

where the Sion minimax theorem us used in the analysis of a class
of second order fully nonlinear equations.

Our approach is also closed in spirit to Evans interpretation of
Mather theory in terms of complementarity problems.

Note that the asymptotic result is confined to convex
Hamiltonians
Ziliotto 2018 has recently found a counterexample in the
nonconvex case
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The model
We consider a Lagrangian L(x , q) from RN ⇥ RN to R satisfying
the following conditions

I L is continuous in both arguments and convex in q;

I lim|q|!+1

h
inf

x2B
L(x ,q)
|q|

i
= +1 for any B ⇢ RN bounded;

I lim|(x ,q)|!+1 L(x , q) = +1.

We denote by H(x , p) the Hamiltonian obtained from L via
Fenchel transform. We define the critical value of H as follows

c = min{a | H = a admits subsolutions in RN}.

The term subsolution can be equivalently understood as a.e.
(locally Lipschitz continuous) or viscosity subsolutions.

Under the above assumptions the definition is well posed. The
constant c is a minimum thanks to basic stability properties of
viscosity subsolutions.
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Given � > 0, we consider the discounted equation

� u + H(x ,Du) = c in RN . (E�)

In general this equation satisfies stronger comparison principles
than the critical equation

H(x ,Du) = c in RN . (Ec)

due to its strict monotonicity in u.

For instance it admits unique (viscosity) solution if the state
variable space is compact, say the torus TN instead of RN , or for
Hamiltonians of special forms in RN .

The most celebrated example are the Hamiltonians of Bellman
type which are related to infinite horizon control problems. In this
cases the solution is given by a line integral representation formula.

The proof by Crandall–Lions (1982) that the value function of the
related control problem is the unique solution of the
Hamilton–Jacobi–Bellman equation has been the starting point
of viscosity solution theory.
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However in our setting it is not di�cult to exhibit even
one–dimensional Hamiltonians for which (E�) admits multiple
solutions.

One of the solution is better than the others. It admits the
same integral representation of above. It is the pointwise
maximum of the family of all subsolutions and will be denoted by
u�.

It can actually be shown that it is finite and is a solution to (E�).
It is actually the maximal solution.

We think that it can be further characterized by some intrinsic
properties. But this is still not fully proved.

The equation (Ec) not only possess multiple solutions even in the
compact setting , but the notion of maximal solution cannot be
given since the pointwise supremum of all subsolution is
apparently infinite.
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Due to the unboundedness of RN , all supercritical equations,
with a > c in place of c admit solutions as well.

For a qualitative analysis of the critical equation (Ec) it is
convenient to consider for any y 2 RN the family of maximal
critical subsolutions vanishing at y , denoted by S(y , ·).

They play the role of fundamental solutions of (Ec). More
precisely

I S(y , ·) is subsolution in RN and solution in RN \ {0}

We name after Aubry and denote by A the set of points y such
that

I S(y , ·) is a solution in the whole space.
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When the equation is posed in a compact space, the following
properties hold for the Aubry set:

I It is nonempty;

I it is an uniqueness set for (Ec), namely any admissible trace
on A can be uniquely extended to be a solution in the whole
space

I given any y 2 A, there are no critical subsolutions w which
are strict locally at y , namely satisfying

H(x ,Dw(x))  c�✏ in a neightborhood of y , for some ✏ > 0

This is actually a characterization.

Roughly speaking, the obstruction to find subsolution below the
critical value is concentrated on A.
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In the noncompact setting the situation is by far more
complicated. It is also possible that A is empty. It is no more
an uniqueness set for the critical equation and so on.

The above assumption plus the additional one in the next slide
guarantee

I A 6= ;
I A is compact;

I there is no Aubry set at infinity. No obstruction to find
subsolution below c at infinity.

It is the unbounded setting more close to the compact case. It is
not clear if the asymptotic result we are looking for can be
obtained by relaxing this set of geometric conditions.
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The additional condition that ensures a nice behavior of H at
infinity is

I There exists a locally Lipschitz continuous function  with
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Our result is

Theorem
The whole family u� converges locally uniformly to a distinguished
solution of (Ec).

‘
It is relatively easy to show that the u� are locally equibounded
and locally equiLipschitz continuous, which implies local uniform
convergence up to subsequences.

The di�cult point is to show uniqueness of the limit for the whole
family. In other term to prove that the asymptotic procedure is
capable to select a special critical solution at the limit as �! 0.
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Role of probability measures
One of main ideas in DFIZ is to reduce the convergence of
solutions to convergence of appropriate probability measures.

Using the representation formula for solutions of the discounted
equation, they define a class of measures suitably related to such
solutions.

They then show that such measures converges, up to
subsequences, to Mather measures for L.

We recall that a Mather measure µ is characterized by the
following properties

I It is closed, namely hµ,Df (x) · qi for any C 1 function f

I hµ, Li = �c

where

hµ,�i =
Z

�(x , q) dµ(x , q)

for any � : RN ⇥ RN ! R, µ probability measure on RN ⇥ RN .
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Generalized Lagrangians
The existence of Mather measures is shown defining preliminarily
occupational, holonomic measures on curves.

We also work with measures but our approach is more abstract,
we set to ease notations c = 0
We consider the space X of continuous function
� : RN ⇥ RN ! R. It is clear that L 2 X .

We say that a locally Lipschitz continuous function u is a
subsolution for � if

Du(x) · q  �(x , q) for a.e. x 2 RN , any q 2 RN

We further say that u is a strict subsolution if

Du(x) · q  �(x , q)� ✏ for a.e. x , any q, some ✏ > 0.
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A subsolution corresponding to L+ a, for some a 2 R, is nothing
but a subsolution of the equation H = a.

The idea is to interpret the closedness condition as a variational
condition in the space X .

Imagine that there is a subsolution for � then there is a strict
subsolution for �+ ✏, say u, and u can be regularized still
remaining a strict subsolution for �+ ✏. So we can assume that u
is smooth.

If µ is a closed probability measure we have

hµ,�+ ✏i � hµ,Du(x) · qi = 0

We have therefore proved

Fact
Let µ be a closed measure and � an element of X admitting
subsolution then

hµ,�i � 0.
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First duality principle
We endow X with the compact open topology making it a
locally convex Hausdor↵ space.

Given a closed convex subset E ⇢ X and �0 2 @E , we denote by
N
E

(�0) the normal cone to E at �0 which is defined as

N
E

(�0) = {p 2 X ⇤ | (p,�� �0)  0 for any � 2 E},

where X ⇤ indicates the topological dual of X and (·, ·) the pairing
between X and X ⇤. We recall that the positive elements of X ⇤ are
the Radon measures with compact support

In contrast to what happens for finite dimensional spaces, N
E

(�0)
can reduce to {0}. However we have

Fact
Let E be a closed convex subset of X with nonempty interior, then
N
E

(�0) contains nonzero elements for any �0 2 @E .

This is actually a simple consequence of the Hyperplane Separation
theorem in locally convex Hausdor↵ spaces.
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We use our hypotheses on L to find an open ball B0 ⇢ RN

satisfying

I 0 = min{a | H = a admits subsolution in B0}
I if a locally Lipschitz function satisfies Du(x) · q  L(x , q) + a

for x 2 B0, |q|  R , then u is subsolution of H = a in RN .

We define the convex cone with vertex 0 G0 ⇢ X of all � such
that there is a locally Lipschitz continuous function u with

Du(x)·q  �(x , q)�✏ for some ✏ > 0, a.e. x 2 B0, any |q|  R

Note that L+ ✏ 2 G0 for any positive ✏.
Since the condition defining G0 is given on a bounded subset of
RN ⇥ RN , we immediately deduce

Fact
The cone G0 is open in X endowed with the compact open
topology.
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We moreover have

I Any � admitting a subsolution belongs to G0

I L 2 @G0

Exploiting the that G0 is closed convex cone with nonempty
interior, we further get that N

L

(G0) contains nonzero elements.
We have in addition

Fact
Any nonzero element of �NG0(L) is a (compactly supported)
probability measures, up to normalization.

We denote by M0 the above set of probability measures. Taking
into account that G0 is a cone

hµ, Li = 0 and hµ,�i = 0 for any � 2 G0
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We define the set of Mather measures for L or H, denoted by
M � M0 the set of probability measures µ satisfying

hµ, Li = 0 and hµ,�i = 0 for any � 2 G

where

G = {� 2 X admitting subsolutions}

Exploiting the compactness of A, it can be proved

I any measure of M is compactly supported

I the projection on the first component of the support of any
such measure is contained in A

I M is convex and compact with respect to the narrow
topology.
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It is convenient to define the notion of locally closed measure

hµ,Df (x) · qi for any compactly supported C 1 function f

We have the following characterization

Fact
The following three conditions are equivalent:

I µ 2 M;

I µ is closed and hµ, Li = 0

I µ is locally closed and hµ, Li = 0
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Second duality principle

We use Sion minimax principle, at least a simplified version of it.

Given a function F : A⇥ B ! R with A compact convex subset of
a topological vector space and B convex subset of another
topological vector space, F (x , y) satisfying suitable semicontinuity
and convexity/concavity properties in x , y we can conclude

min
x

sup
y

F (x , y) = sup
y

min
x

F (x , y)

We aim at constructing a class of measures enjoying suitable
properties with respect to the discounted equation

We consider the compact perturbation of L of the form

�(x , q) = t L(x , q) + f (x , q) t � 0, f compactly supported
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We denote by u� the maximal solution to the discounted equation

� u + H(x ,Du) = 0

and by u�,� the maximal solution of the same equation with H�,
the Fenchel transform of � in place of H.

We show

Theorem
Given � > 0, z 2 RN , there exist probability measures µ with

hµ, Li = � u�(z), hµ,�i � � u�,�(z)

for any compact perturbation � of L.



We denote by u� the maximal solution to the discounted equation

� u + H(x ,Du) = 0

and by u�,� the maximal solution of the same equation with H�,
the Fenchel transform of � in place of H.

We show

Theorem
Given � > 0, z 2 RN , there exist probability measures µ with

hµ, Li = � u�(z), hµ,�i � � u�,�(z)

for any compact perturbation � of L.



We denote by u� the maximal solution to the discounted equation

� u + H(x ,Du) = 0

and by u�,� the maximal solution of the same equation with H�,
the Fenchel transform of � in place of H.

We show

Theorem
Given � > 0, z 2 RN , there exist probability measures µ with

hµ, Li = � u�(z), hµ,�i � � u�,�(z)

for any compact perturbation � of L.



We denote by u� the maximal solution to the discounted equation

� u + H(x ,Du) = 0

and by u�,� the maximal solution of the same equation with H�,
the Fenchel transform of � in place of H.

We show

Theorem
Given � > 0, z 2 RN , there exist probability measures µ with

hµ, Li = � u�(z), hµ,�i � � u�,�(z)

for any compact perturbation � of L.



We assume that u�(z) = 0 and consider the convex cone with
vertex at the origin

F�,z = {� compact perturbation of L | u�,�(z) = 0}.

We show:

Fact
There exists a probability measure µ with

0 = hµ, Li  hµ,�i for any � 2 F�,z .

The idea of the proof is to consider, given a �0 all the probability
measures such that the inequality to be proved holds for L and �0

namely the set

P(�0) = {µ | hµ, Li  hµ,�0i}



We assume that u�(z) = 0 and consider the convex cone with
vertex at the origin

F�,z = {� compact perturbation of L | u�,�(z) = 0}.

We show:

Fact
There exists a probability measure µ with

0 = hµ, Li  hµ,�i for any � 2 F�,z .

The idea of the proof is to consider, given a �0 all the probability
measures such that the inequality to be proved holds for L and �0

namely the set

P(�0) = {µ | hµ, Li  hµ,�0i}



We assume that u�(z) = 0 and consider the convex cone with
vertex at the origin

F�,z = {� compact perturbation of L | u�,�(z) = 0}.

We show:

Fact
There exists a probability measure µ with

0 = hµ, Li  hµ,�i for any � 2 F�,z .

The idea of the proof is to consider, given a �0 all the probability
measures such that the inequality to be proved holds for L and �0

namely the set

P(�0) = {µ | hµ, Li  hµ,�0i}



The problem is that in general this set is noncompact in the
narrow topology. to get compactness we have to modify it.

We compose �0 a cut–o↵ function and use the following
consequence of coercivity properties in x and q of L

Fact
Given any real number a the sublevel

{µ probability measure | hµ, Li  a}

is compact in the narrow topology.
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The assertion is equivalent to

\P(�0) 6= ;

If we assume the contrary by contradiction we have by
compactness and finite intersection property

\
i

P(�
i

) = ;

By applying Sion minimax theorem, we find that there exists �
in the convex hull of �

i

with

P(�) = ;

in other terms

hµ, Li � hµ,�i
for any probability measure.
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This holds in particular for any Dirac measure and so

L(x , q) > �(x , q)

using some viscosity comparison techniques, we see that this is
in contrast with

u�(z) = u�,�(z) = 0.

This ends the proof.
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Convergence of measures

We exploit that as consequence of the last assumption L possess a
compactly supported subsolution plus the characterization of
Mather measures as locally closed measures µ with hµ, Li = 0 to
get

Theorem
Given �

j

infinitesimal and z 2 RN , we consider a sequence of
measures µ

j

with
hµ

j

, Li = �
j

u�
j

(z).

Then µ
j

narrowly converges, up to subsequences, to a probability
measure µ 2 M.
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Main result
We need two more lemmata to prove the main result.

In the first one we fully exploit all the hypotheses on L

Fact
Given any subsolution u to H = a, critical or supercritical and a
compact subset K of RN , there exists another solution w of the
same equation with compactly supported and satisfying

w = u +M on K for some positive constant M.

the second lemma is

Fact
We have that

hµ, u�i  0 for any � > 0, any Mather measure µ.
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The limit function

Regarding the limit function, denoted by w0 , we recover the
formula already discovered in DFIZ paper.

w0(x) = max{v(x) | v sol. to (E�) with hµ, vi  0 8µ 2 M}

We propose a metric interpretation

Given x , y in RN , S(x , y), namely the value at x of the maximal
subsolution vanishing at y , can be interpreted as an intrinsic
(semi)distance related to the critical equation (E�).

I S(·, ·) satisfies a triangular inequality

I it can be defined an intrinsic length on the curves in RN in
such a way that S(x , y) is the infimum of the intrinsic lengths
of curves linking x to y
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We define the Wasserstein semidistance with cost S(x , y) in the
space of probability measures in RN denoted by S

S(µ, ⌫) = inf

⇢Z
S(x , y) d�(x , y)

�

where � varies among the probability measures in RN ⇥ RN with
first marginal µ and second marginal ⌫.

We set

M = {⇡1#⌫ | ⌫ 2 M}

We have

w0(x) = min{S(⌫, �
x

) | ⌫ 2 M}
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