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Granular Mechanics and Asteroids
• A recent focus of space missions and astrophysical science 

are the mechanics of primitive asteroids
– A key question is how does gravitational attraction, i.e., the N-body 

problem, affect these micro-gravity bodies.
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Fundamental and Simple Questions: 
What is the expected configuration of a collection of 

self-gravitating grains?

Images of Asteroid Itokawa, ~0.5 km in length



Fundamental and Simple Questions: 
How will they reconfigure themselves under 

changing angular momentum?

Images of Asteroid Ryugu, ~1.0 km in diameter



Fundamental and Simple Questions: 
How can they form into multiple component systems?

Models of Binary Asteroid 1999 KW4



Fundamental and Simple Questions: 
How can they form into multiple component systems?

Models of Binary Asteroid 1999 KW4
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Mathematical Challenge
• Develop a realistic model for such systems that can be analyzed in 

a mathematically tractable way
• Approach:
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– N-body problem of gravitationally interacting 
rigid bodies.

– Account for finite densities, surface friction  
and energy dissipation, allowing for contact 
mechanics and minimum energy 
configurations.

– Track stable system configurations as a 
function of angular momentum to identify key 
transitions that can be associated with 
astrophysical observations.

– Place rigorous constraints on the possible final 
outcomes of these systems. 
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Celestial Mechanics of Point Mass Bodies

• A collection of point mass bodies will conserve Angular 
Momentum and Energy. If it is “forced” to dissipate 
energy it will eventually violate some aspect of its 
configuration space.  
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Celestial Mechanics of Finite Density Bodies

• A collection of quasi-rigid bodies. Inherit all of the 
classical N-body conservation principles, but are also 
subject to surface forces and tidal distortion 
– Enables “resting equilibria” to exist 
– Adds “moments of inertia” and attitude
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j ·Ti
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Finite Density N-Body Problem
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General System Formulation
• The Lagrangian of N interacting rigid bodies can be 

expressed conveniently in terms of relative states and 
mass distributions 
– Potential energy: 

– Kinetic energy: 

– Lagrangian: 

– Total Angular Momentum: 
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System Reduction
• Transforming to a frame rotating with the total angular 

momentum:

– Where                         is the instantaneous moment of inertia of the entire 
system about the angular momentum direction.  

• The angle    is ignorable (due to AM conservation), and Routh 
reduction yields the amended potential:

– Can be generalized to account for non-holonomic interactions between 
bodies in contact and rolling on each other 

– Is distinct from, but yields the same results as, the usual amended potential, 
and is easier to work with (Moeckel, 2017) 
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ω = 1
IH

H = ·θĤ

IH = Ĥ ⋅ I ⋅ Ĥ

θ

ℰ = H2

2 IH
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ℰ′� = 1
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The Full N-Body Problem
• Using the amended potential of the form:

– where H is the total angular momentum magnitude, a constant
– IH is the system moment of inertia about the angular momentum 

vector, a function of Q and not constant
–      is the mutual gravitational potential of the system
– The total energy of the system is                        , so 

• Thus relative equilibria and their energetic (not spectral) stability can 
be analyzed through the study of     alone as a function of a minimal 
set of coordinates 

• Allows us to use the total angular momentum as a parameter, to track 
how the relative equilibria change as it varies 
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+ U

U

E
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qi 2 Q; i = 1, 2, . . . , 6N
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Point Mass Relative Equilibria

�12

IH =
1

M

X

i<j

mimj

h
r2ij � (rij · Ĥ)2
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Finite Density Relative Equilibria
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Point Mass vs Finite Density
• The most important differences between these two problems can 

be reduced to the properties of the amended potential and its 
relation to the angular momentum H and energy E 
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Point Mass Properties:
• Unbounded from below as 

whenever  rij -> 0, 
• Means that there are no 

minimum energy configurations 
for N ≥ 3 as any system can 
conserve H as E -> -∞
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rij ≥ Dij(Tij)

• Means that minimum 
energy configurations exist 
for any N as
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Consider the Simplest 
Full N-Body problem
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Minimum Energy Configurations of 
the Spherical Full Body Problem

• For definiteness, consider the simple change from point 
mass to finite spheres (so potential energy is unchanged)
– For a collection of N spheres of diameter di the only change in       

is to IH

• But this dramatically changes the structure of the 
minimum energy configurations... take the 2-body 
problem for example with equal size spheres, normalized 
to unity radius
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2-Body Problem
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Spherical Full 3-Body Problem
• Potential Energy and Total Moment of Inertia (assumed planar)

• Normalization:
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Relative Equilibria in the Full 3BP
• Addition of finite density leads to 23 additional (planar) equilibria in the 3BP
• Relative equilibria as a function of unconstrained degrees of freedom (DOF) 
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DOF Configurations Names Numbers

0 Lagrange 
Resting 2

1
Euler Resting
Transitional R.

3
6

2
Euler Aligned

Isosceles
6
6

3
Euler

Lagrange
3
2 = 28



Lagrange 
Resting

Euler Resting

Transitional
Resting

Isosceles Euler
Aligned

1 3

m1 � m2 � m3

2

Lagrange
Orbital

stable for some values of H

always unstable

stable for some values of 
masses and H

has dual orderings

ER132

ER123

ER312

IS23-1

IS13-2

IS12-3

TR132

TR123

TR213

EA23-1

EA13-2

EA32-1

EA12-3

EA21-3

EA31-2

Euler
Orbital

EO132

EO123

EO312
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Relationships Between Equilibria
• The equilibria are connected to each other through 

bifurcation pathways as H is varied — none are isolated
– These bifurcation pathways can also represent stability transitions 

in “rubble pile asteroids” as their angular momentum increases
– Especially significant are transitions from stable relative 

equilibria to unstable relative equilibria, as additional stable 
relative equilibria will exist at a lower energy, leading to an 
abrupt on-sent of dynamical evolution
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Stability Transitions
• Euler Resting transition from unstable to stable:
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Stability Transitions
• Lagrange configuration transition from stable to unstable:
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Stability Transitions
• Euler configurations transition from stable to unstable:
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Dynamics post-fission
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Dynamics post-fission
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Movies by S.A. Jacobson
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What Happens After Fission?
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2-Component Rotational Fission

• Fission can be a smooth transition for a rubble pile
• Energy and AM are ideally conserved, but are 

decomposed:
– Kinetic Energy

– Potential Energy

– The mutual potential energy is “liberated” and serves as a conduit 
to transfer rotational and translational KE 
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Rotational Fission
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Rotational Fission
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Orbital Evolution
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Free Energy

• The “free energy” of the system controls the final system state:

– If disruption occurs, the mutual potential goes to 0:  
– If EFree > 0, system can “catastrophically disrupt”

– If EFree < 0, system cannot “catastrophically disrupt” — Hill Stable
– If 0 < EFree << 1 escape leads to a slowly rotating primary 
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Itokawa
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BODY
HEAD

ω ∗
∗

Head and Body will orbit at a ~ 6 hour period
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Itokawa Post-Fission Dynamics
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• Total system energy is negative but near zero, disruption impossible
• Re-impact is possible if initial Energy is larger than fission energy
• Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts

Minimum Energy Fission Configuration

Movie courtesy of S. Jacobson
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Itokawa Post-Fission Dynamics
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• Total system energy is negative but near zero, disruption impossible
• Re-impact is possible if initial Energy is larger than fission energy
• Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts

Minimum Energy Configuration 
at same Angular Momentum

Movie courtesy of S. Jacobson
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Itokawa Post-Fission Dynamics
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1999 KW4

• Contact binary with Alpha and Beta resting on each other 
will fission at a spin rate > 4 hours
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1999 KW4 Fission
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• Total system energy is positive, disruption occurs after a “few months” 
• If energy dissipation is “fast”, can also settle into a minimum energy orbit
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1999 KW4 Fission
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• Total system energy is positive, disruption occurs after a “few months” 
• If energy dissipation is “fast”, can also settle into a minimum energy orbit
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Hill Stability in the 3BP
• In the point-mass 3-body problem Hill Stability (i.e., 

completely bounded motion) is difficult to establish 
– Due in part to the unbounded amended potential
– Examples arise from KAM theory and the Circular Restricted 3-BP

• For the finite density 3-body problem, conditions for Hill 
Stability can be proven easily for multiple situations
– Arise as the mutual potential between 2 bodies is bounded from below:

– Then if body k escapes,                     and:
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Hill Stability for the F3BP
• Assuming m3 ≤ m2 ≤ m1 it is easy to prove that:

– B: If                                   All motion is bounded

– HE3: If                              Body 3 can escape

– HE2: If                              Body 2 or 3 can escape

– HE1: If                              Body 1, 2 or 3 can escape

– H: If                                   All bodies can mutually escape
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Energy / Angular Momentum Chart
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Hill Stability for N body systems

• A Configuration of P components with qi; i = 1, 2, … P bodies in 
each component is Configuration Hill Stable if none of these 
components can mutually escape to infinity. 

• A given configuration of P components with qi bodies in each 
component is Configuration Hill Stable if

– Since the distance between bodies is bounded, there is a minimum 
gravitational potential energy, which restricts escape.

�58

System Energy of an
N-Body Problem

E = T + U U = �
N�1X

i=1

NX

j=i+1

1

rij

Gravitational Potential Energy 
for Finite Density Bodies Minimum Potential 

Um(N) = min
rij�1

U

E <
PX

i

Um(qi)
Um(2) = �1

Um(3) = �3

Um(4) = �6

Um(5) > �10

See:  D.J. Scheeres. 2016. “Hill Stability of Configurations in the Full N-Body Problem,” in Asteroids: 
New observations, New models, Proceedings of the International Astronomical Union 318: 128–134. 
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Fission and Escape for N Bodies
• Given N bodies, a Configuration is a collection of these bodies 

into P groups, with each group having a set number of bodies qi.

N = 2, M = 2

N = 3, M = 3

N = 4, M = 5

N = 5, M = 7

(1:1)

(P:q1, q2, …, qP)N-Body Configurations

(2:1,1)

(1:3)

(1:4)

(1:5)

(3:1,1,1) (4:1,1,1,1) (5:1,1,1,1,1)

(2:3,1)

(2:2,2)

(3:2,1,1)

(2:4,1)

(2:3,2)

(3:3,1,1)

(3:2,2,1)

(4:2,1,1,1)
(2:2,1)
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Energy Limits for N = 2, 3, 4
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Energy Limits for N = 5
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Summary
• Study of asteroids leads directly to study of minimum 

energy configurations in Celestial Mechanics in granular 
mechanics-types of situations
– Only possible for bodies with finite density 

• For finite density bodies, minimum energy and stable 
configurations are defined as a function of angular 
momentum by studying the amended potential:

– only a function of the internal, relative system configuration
– Globally minimum energy configurations seem to be denumerable

• Simple few body systems can be fully explored
– Need theories for polydisperse grains and N >> 1
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Abstract

Celestial Mechanics systems have two fundamental conservation principles: conservation of momentum and
conservation of (mechanical) energy. Of the two, conservation of momentum provides the most constraints on
a general system, with three translational symmetries (which can be trivially removed) and three rotational
symmetries. If no external force acts on the system, these quantities are always conserved independent of the
internal interactions of the system. In contrast, conservation of energy involves assumptions on both the lack of
exogenous forces and on the nature of internal interactions within the system. For this reason energy is often
not conserved for “real” systems that involve internal interactions, such as tidal deformations or impacts, even
though such systems conserve total momentum. Thus, mechanical energy generally decays through dissipation
until the system has found a local or global minimum energy configuration that corresponds to its constant
level of angular momentum. This observation motivates a fundamental question for celestial mechanics: What
is the minimum energy configuration of a N-body system with a fixed level of angular momentum? It can
be shown that this is an ill-defined question and has no answer for traditional point-mass celestial mechanics
systems. If, instead, the system and problem are formulated accounting for finite density distributions this
question becomes well posed and we can prove the existence of minimum energy configurations for all suitably
formulated celestial mechanics systems (Scheeres, CMDA 113(3): 291-320, 2012). This small change also leads
to fundamental changes in the nature and stability properties of relative equilibria and, ultimately, the dynamics
of these systems. Finally, we can also show that this naturally leads to a “granular mechanics” extension of
celestial mechanics, with fundamental links between this topic and the science of small solar system bodies.

1 Lecture notes

We’re interested in the mechanics of small asteroids.
Stepping back, asteroids look like self-gravitating rocks. We can assume they are cohesionless collections of rocks

resting on each other.
What is the expected configuration? How will they reconfigure themselves if the angular momentum changes

with time, on account of, for example, sunlight inserting torque into the system? This would account for a very
slow and gradual change of angular momentum.

These asteroids form into multi-component systems, for example binary asteroids.
Mathematical challenge - develop a realistic model for such systems. The approach is the N-body problem

of gravitationally interacting rigid bodies. Must account for finite density, allowing for contact mechanics and
minimum energy configurations.

The goal is to track the stable system configurations as a function of angular momentum to identify transitions,
and put rigorous constraints on them.

Background: celestial mechanics of point mass bodies. If we force this system to dissipate energy, it will at some
point violate some of its conservation constraints.

Celestial mechanics of finite density bodies - the system inherits the N-body conservational principles, but are
subject to surface and tidal forcing, enabling a natural energy dissipation mechanism. This allows for resting
equilibria to exist. It is important to treat this carefully to get a physical model as the momenta themselves deviate
from initial values.

The Lagrangian can be expressed in terms of the potential energy U , the kinetic energy T and the total angular
momentum H.

Then, the system can be reduced by transforming to a frame rotating with the total angular momentum. Due
to AM conservation the angle itself is ignorable, and Routh reduction yields an amended potential, that can be
generalized to account for non-holonomic interactions, for example if the bodies roll on each other.
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Obtain the amended potential

E =
H2

2IH
+ U ,

where IH is the instantaneous moment of inertia of the entire system.
This is distinct from the usual amended potential E ′ = 1

2
H · I−1 · H+ U , but produces the same results.

The full N-body problem - using the amended potential.
The total energy of the system is E = T + E , so E (Q) ≤ E. The relative equilibria and their stability are

analyzed through E as a function of a minimal coordinate set.
Differences between this and a point mass relative equilibrium: The moment of inertia IH is different, as is the

potential energy. The stability condition is not used generally in celestial mechanics because it is never satisfied for
N ≥ 3.

The finite-density relative equilibria - the equilibrium has two different forms, unconstrained and constrained.
Thus, for the equilibrium to exist in the constrained case, the perturbation must be positive. In the finite-density
case, given dissipation the system will always approach a relative equilibrium.

Finite density properties - the energy density is compact and bounded, therefore minimum energy configurations
exist for any N . Basically, at one point the masses touch each other and we get to the bottom of the well.

Minimum energy configurations of the spherical full body problem - Gravitational potential remains the same
as point masses, but we have to account for the moment of inertia for each sphere. Even for the two-body problem,
this dramatically changes the structure of minimum energy configurations.

Thus, very different behaviors between the point mass case and the finite density case for the 2-body problem.
In the point mass case, there is only one stationary orbit energy configuration. In the finite density case, if the
angular momentum is too low, there are no orbits and the bodies rest on each other. For high enough angular
momentum energy configurations - a bifurcation to 2 stationary orbit energy configurations per AM value.

Assuming the planar problem, constant density spheres, and normalizing the system so that the sum of radii
and the sum of masses are 1, the configuration space can be described by a diagram - m1 +m2 +m3 = 1 so every
point in the diagram corresponds to a different configuration. We can restrict all cases to the lower half triangle in
which m1 ≥ m2 ≥ m3.

Planar problem - get an additional 23 planar equilibria to the classical five equilibria from the three body point
mass problem - the Euler and Lagrage sets. The equilibria can be looked at as a function of unconstrained degrees
of freedom - the new equilibria arise from the fact that as soon as we let two of these bodies touch each other, we
reduce the number of degrees of freedom and change the structure and number of unconstrained degrees of freedom.

Overall - 28 equilibria for planar 3 body. None of them are stable for any value of AM, no matter what the
masses and mass ratios are. But some are stable for certain sets of AM values and mass ratios. The five point-mass
equilibria are still unstable.

Transitions from a stable relative equilibria to unstable relative equilibria - interesting because this relates to
energy dissipation resulting in a perhaps stable state transitioning to an unstable equilibrium in a new energy regime
in which additional stable equilibria exist.

Increasing AM can cause a transition from stable to unstable and vice versa, depending on configuration.
Eventually obtain detailed bifurcation charts. As the angular momentum goes to infinity, there are stable

configurations.
Recalling initial trangle -the axis lines are m1 = m2, m2 = m3, m3 = m1. The green line marks the resting

central configuration.
What happens at a bifurcation point where a resting configuration no longer exists? There is a stable relative

equilibrium that still exists.
Movies - Right - rotating with center of mass. Can teach us about formation of asteroids.
Diagram - unstable and stable ER 132 sequence - always a minimum energy configuration. Along the small

green line, stays stable.
Equal densities - if there are different densities the diagrams change a lot and there are more things that can be

studied.
Can do the same analysis for all types of equilibria.
The bifurcation framework uses the energy-angular momentum E − H2 diagram - H2 because then the lines

of changing configurations are linear. We can use these diagrams to depict what happens to stability of different
configurations. Transitioning between stable types the straight line breaks and transitions to a different line, and
there is some excess energy that manifests as complex dynamics.
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In the direction of reducing the angular momentum, when the system transitions from one stable type to another,
the energy collapses down and the system dissipates energy through some mechanism, for example tidal forces..

So this can be used to trace out how the systems form around each other. Movie - at excess energy point.
Finite density 4-body problem - more tiresome.
They are all energetically unstable. ??

What happens after fission - after the systems break apart and start rotating around each other?
2-component rotational fission can be a smooth transition.
Free energy - total energy at which bodies split minus self potentials.
If disruption occurs and the bodies separate, the mutual potential goes to 0. Thus the sign of Efree determines

whether or not the system can “catastrophically disrupt”. So disruption vs. equilibrium depends on rate of energy
dissipation.

This is used practically by looking at measurements of asteroids that were close to each other some time ago.
Different diagrams for different configurations.
Fission and escape for N bodies.

2 Questions

- If you have 2 bodies with more complicated shapes, how would you calculate the potential?
For 2 polyhedra, for example, there are no closed form formulas, but can be calculated up to any order, and

since any shape can be approximated by polyhedra then any shape can be considered.

- Why are there minimum energy configurations for 2 point masses?
In the reduced case, fixing angular momentum limits the distance between the two point masses.

- From the last movie with the grains, how do we model that?
Realm of granular mechanics. Paul Sanchez is the expert in simulating granular materials. There are several

different ways, the method in the movie is a soft sphere method - hits are accompanied by dissipation and spring
energy - this is a very realistic model. However it is hard to get a good explanation of what happens in these large
scale systems, and they take a long time to compute.

- In the many body case, do we see the phenomena and collective effects and could we come up with a mean
field theory, like you would do in stellar dynamics - statistical approach?

These sorts of approaches could be possible. Could calculate which areas in phase space are more densely pop-
ulated. One example - asteroids that integrated backwards come together to the same area, this is indicative of a
many body configuration.

- Are there examples of triple asteroids in the solar system?
Lots of binary asteroids - 50 %. A much smaller - but still exist - 3 asteroids. A few 4- and 5-asteroid systems

are known.
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