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Granular Mechanics and Asteroids

* Arecent focus of space missions and astrophysical science
are the mechanics of primitive asteroids

— A key question 1s how does gravitational attraction, 1.e., the N-body
problem, affect these micro-gravity bodies. "
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Fundamental and Simple Questions:

What is the expected configuration of a collection of
self-gravitating grains?




Fundamental and Simple Questions:

How will they reconfigure themselves under
changing angular momentum?

Images of Asteroid Ryugu, ~1.0 km in diameter



Fundamental and Simple Questions:
How can they form into multiple component systems?

2001 May 21 - 00:00:00

Models of Binary Asteroid 1999 KW4
¢

¢ 0 o ¢ ¢ ¢ 0 .
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Mathematical Challenge

* Develop a realistic model for such systems that can be analyzed in
a mathematically tractable way

* Approach:
— N-body problem of gravitationally interacting
rigid bodies. iy = —01a X P

— Account for finite densities, surface friction
and energy dissipation, allowing for contact
mechanics and minimum energy
configurations.

— Track stable system configurations as a
function of angular momentum to i1dentify key
transitions that can be associated with
astrophysical observations.

— Place rigorous constraints on the possible final
outcomes of these systems.

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 6



Celestial Mechanics of Point Mass Bodies

e A collection of point mass bodies will conserve Angular
Momentum and Energy. It 1t 1s “forced” to dissipate
energy 1t will eventually violate some aspect of its
configuration space.

H Point Mass N-Body Problem

P>
ri2

P; Configuration Space:

3 Q:{PZ] : Z)j:1,2,,N‘ Z]TZJ>O}

r3i

P Masses:
3 M
mi;r=1,2,..., N
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Celestial Mechanics of Finite Density Bodies

e A collection of quasi-rigid bodies. Inherit all of the
classical N-body conservation principles, but are also
subject to surface forces and tidal distortion

— Enables “resting equilibria” to exist

— Adds “moments of inertia’ and attitude

H Finite Density N-Body Problem
B

T
Configuration Space:

3 Q:{I"L]aT’Ljalv.]:l?Z?7N’TUZDZ](TZ])}

T;; =T, - T,

Mass and Inertias:

B;
J— f mi,Ii;izl,Q,...,N

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 8
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General System Formulation

 The Lagrangian of N interacting rigid bodies can be
expressed conveniently 1n terms of relative states and
mass distributions

?J [ dm(r) dm(r’)
% JRB

— Potential energy: % = — —
2 r—r

L 1
— Kinetic energy: T = —J J (v—-v")-(v—-v)dm(r)dm(r’)
AM J 5 ) 5
— Lagrangian: L=T-%U
— Total Angular Momentum:

H=T. ﬁ J'% J@ (r—1r’) X (v—=v)dm(r)dm(r’)

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 9



System Reduction

* Transforming to a frame rotating with the total angular
momentum:

1 A

w = —H = 6H

Iy

— Where [; = H-1I-H is the instantaneous moment of inertia of the entire
system about the angular momentum direction.

* The angle 0 1s 1ignorable (due to AM conservation), and Routh
reduction yields the amended potential:

&

H2
S
2 1,

— Can be generalized to account for non-holonomic interactions between
bodies 1n contact and rol

—Is d

and

| 1S easier to work wit

ing on each other

1stinct from, but yields the same results as, the usual amended potential,

h (Moeckel, 2017) o _ lH ' H+ %
— 5 ° ¢
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The Full N-Body Problem

* Using the amended potential of the form:

H2
g_le U

— where H 1s the total angular momentum magnitude, a constant

— Iy 1s the system moment of inertia about the angular momentum
vector, a function of () and not constant

— U is the mutual gravitational potential of the system
_ The total energy of the systemis £ =T + E,s0 £(Q) < E

* Thus relative equilibria and their energetic (not spectral) stability can
be analyzed through the study of £ alone as a function of a minimal
set of coordinates ¢; € Q;1=1,2,...,6N

e Allows us to use the total angular momentum as a parameter, to track
how the relative equilibria change as it varies

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 11



Point Mass Relative Equilibria

1 .
Iy = Vi Zmimj {T?j — (I ’H)Q}

1<

Z 0%E
2 =
Stability: 5 g — a 5 qQ; 5 QJ > O Always true for N=2

q:0q j Never true for N = 3

. "
t,J

Under dissipation a N = 3 system will always approach singularity



Iy Zmzmj{i-

1<J

Finite Density Relative Equilibria

A A A

r,,,J.H)2}+H-ZTZ--IZ--T§F-H

dmf,; dm j

’LJ) Uij = =G

B;,B,; Pij

Stability: 52 > (0 For all unconstrained DOF

o0& >0 For all constrained

DOF

Under dissipation the system will always a;

pproach a relative equilibrium



Point Mass vs Finite Density

* The most important differences between these two problems can
be reduced to the properties of the amended potential and 1its
relation to the angular momentum H and energy E

H2
Point Mass Properties: E = 211 FU < E  Finite Density Properties:

e Unbounded from below as * Compact and bounded as
whenever r;j-> 0, f — —00 rij = Dij(Tj)

e Means that there are no * Means that minimum
minimum energy configurations energy configurations exist
for N = 3 as any system can for any N as
conserve H as £ -> - U>Dy >—oco0 Ig>Dr>0

P3 P2 Pl
O O O
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Consider the Simplest
Full N-Body problem

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 15



Minimum Energy Configurations of

the Spherical Full Body Problem

* For definiteness, consider the simple change from point
mass to finite spheres (so potential energy 1s unchanged)

— For a collection of N spheres of diameter d; the only change in &

1S to Iy
1 N N
g = E;mzdf +;mz‘7“7;2

* But this dramatically changes the structure of the
minimum energy configurations... take the 2-body
problem for example with equal size spheres, normalized
to unity radius

i h2 1 versus o h2 1
"o2d?2  d "2(044d2) d
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Point Mass Case

-~ Only one stationary orbit
{ energy configuration

|
|
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Angular Momentum
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2-Body Problem

Finite Density Case
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2-Body Problem

Separation
N Point Mass Case o Finite Density Case
Only one statlona.ry orbit o \\ Angular Momentum
[ energy configuration : AN
1.5} - 0.2~ . .
> ,
= / Zero or Two stationary orbit -
[ Angular Momentum /S . Y
0.5 ~ " energy configurations per AM -
o} \\ |
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Spherical Full 3-Body Problem

* Potential Energy and Total Moment of Inertia (assumed planar)

2
IH — g [mlR% + ng% + ngg} |

2 2 2
[m1m2d12 -+ m2m3d23 + mgmldgl}

mi -+ mg + m3

mm mom Mami
I — _ |m2 | a3 | My QQQ
1 2 3

I dlz d23 d31 -
H2 mp; m2 ms
gzle - U dij > Ri + R; R R2 R;
R3
e Normalization: My = Rif + R% —+ R?B)
Rl RQ + RS =1 m1/3
M ——m2‘|‘m3:1 Rz: 1/3 3/3 1/3

my  +my 4 Mg
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Relative Equilibria in the Full 3BP

e Addition of finite density leads to 23 additional (planar) equilibria in the 3BP

e Relative equilibria as a function of unconstrained degrees of freedom (DOF)

DOF Configurations Names Numbers
0 Lagra.nge )
Resting

| Euler Resting 3

Transitional R. 6

, Euler Aligned 6

Isosceles 6

; Euler 3
Lagrange 2 — 18

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 20



Lagrange
Restlng

"

Euler Resting

ER132

ER123

ER312

O
e
°@eo

mip = Mo = M3y

Isosceles

A

‘ ‘ 231
‘ ‘ 1S13-2

@ 15123

Transitional
Resting <\

oy
v

TR123

TR213

Euler
Aligned

“ ‘ EA23-1

EA13-2

EA32-1

EA12-3

EA21-3

EA31-2

Lagrange
Orbital

¥
O
-

Euler
Orbital

O stable for some values of
masses and H

‘ stable for some values of H

‘ always unstable

* has dual orderings



Relationships Between Equ

* The equilibria are connected to each othe

ilibria

r through

bifurcation pathways as H 1s varied — none are 1solated

— These bifurcation pathways can also represent

stability transitions

in “rubble pile asteroids” as their angular momentum increases

— Especially significant are transitions from stable relative

equilibria to unstable relative equilibria, as adc

1tional stable

relative equilibria will exist at a lower energy, leading to an

abrupt on-sent of dynamical evolution

Increasing Angular Momentum

Stable " '

" Unstable

Unstable ‘.‘ —> '.‘ —> '.. Unstable

Stable

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

22



Relationships Between Equ

* The equilibria are connected to each othe

ilibria

r through

bifurcation pathways as H 1s varied — none are 1solated

— These bifurcation pathways can also represent

stability transitions

in “rubble pile asteroids” as their angular momentum increases

— Especially significant are transitions from stable relative

equilibria to unstable relative equilibria, as adc

1tional stable

relative equilibria will exist at a lower energy, leading to an

abrupt on-sent of dynamical evolution

Increasing Angular Momentum

Stable " '

“ Unstable

Unstable ‘.‘ —> '.‘ —> '.. Unstable

Stable

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

22



Relationships Between Equ

* The equilibria are connected to each othe

ilibria

r through

bifurcation pathways as H 1s varied — none are 1solated

— These bifurcation pathways can also represent

stability transitions

in “rubble pile asteroids” as their angular momentum increases

— Especially significant are transitions from stable relative

equilibria to unstable relative equilibria, as adc

1tional stable

relative equilibria will exist at a lower energy, leading to an

abrupt on-sent of dynamical evolution

Increasing Angular Momentum

Stable " '

“ Unstable

Unstable ‘.‘ —> '.‘ —> '. @ Unstable

Stable

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

22



Stability Transitions

----
_________
- -
- ~a
~

-

dio = R1 + R "

dog = Ro + R3  ccaaaao.. 0@@ ------

H2
0 = 212 5[]{ + oU =0 5[]{ = 2m1m3d12d23 sin 9315931
H
oU = m;?’)mg d12d23 SIn (9315(931
31
Resting Euler Equilibria H2 > I [2{

become stable when: — (R1 + 2Ry + R3)?
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Stability Transitions

d31 = R3 + R4
dos = Ro + R3  coeeaee--. ,

d%z — d%g -+ dgl — 2d23d31 COS (912

H? 5IH — 2m1m2d23d31 Sin (9125(912
0 = — Ol + U = ¢ .
H oU = (113 2d23d31 SIn (91256’12
12

2
Resting Lagrange Equilibria 72 > ! H
become unstable when: — ( R + R2)3

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 24



Stability Transitions @

e Buler configurations transition from stable to unstable:

d
di2 = R1 + Ro ‘ ‘
dos = Ro+ Rg3+d  --ccemna--- .@.
d31 = Ry + 2Ry + Rs + d

5][{ — 2 [mlmg (d12 —+ d23 -+ d) —+ mgmg(d23 —+ d)] 561

(dos + d) | od

TN1Mms3
3
ds;

marn3

oU =
s

(d12 + do3 + d) -

{(R1+27£21+R3)2 ' (Rzﬁzg)?]
m1 (1 + 2Ry + R3) + ma(R2 + R3)

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 25
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EA321 Fission [EUPTR=N B erreeeeeeee————_ > - Symmetric
C)‘ ‘ Bifurcation
®

(O H-Bifurcation

L 4

Fission
Transition

Fission
Termination

Stability
Transition

Stable
Configuration

H =0
EA123 Fission

“"** Unstable
Configuration



Euler Fission: EA123

0.3

0.25

0.2

(00

0.15

0.1

Resting Central
Configuration

| | | |

0.4 0.5 0.6 0.7 0.8 0.9 1

0.05




0

T T T T T T T T T T T T T T T T T
OF 7 T T T
OF . —
0 - - 1 1 1 1 1 1 1 1 1 1 1 1 1 1
~ 1000 0 1000 20X
R x [m]
0 1 " " " M 1 M M " " 1 " M "
2000 ~ 1000 0 1000 2000
X [m]
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Dynamics post-fission

o 1000 0 T 20¢
x [m]
Movies by S.A. Jacobson
S T

X [m]
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Unstable ER132 Sequence o Symmetric

Bifurcation

” ,H (O H-Bifurcation

A ‘-‘- ‘ b A Fission

Transition

Fission
Termination

g Stability
H =0 H = <><>E Transition

Stable ER132 Sequence ___ Stable

Configuration
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Configuration




Euler Fission: E132

(0O

Unstable

0.3

0.25
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0.15
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Symmetric
Bifurcation

EA312 Fission

(O H-Bifurcation

Fission
Transition

Fission
Termination

Stability
Transition

Stable
Configuration

H =20
EA213 Fission

Unstable



Euler Fission: E312

0.3
0.25
0.2
AN 0.15

0.1

Resting

Central 0.05

Configuration

I I I I O

0.4 0.5 0.6 0.7 0.8 0.9 1



1.O Bifurcates
into 2 branches

Q (O H-Bifurcation
C)‘ Fission
. Transition
o* Fission
Q Termination
6 o Unstable
. Configuration
H =0 5
1.O Bifurcates

into 1 branch
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Finite Density 4 Body Problem

Static Resting Equilibrium Configurations
- e * oed
3 4

oo 8  cof

Mixed Equilibrium Variable Resting Equilibrium
Configurations Configurations




q = 180°

-
-

Static Rest Confi

-

gxurations 1,2,5 Static Rest Configurations 1, 3,4
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o' q
o, 1

’
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What Happens After Fission?

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 38



2-Component Rotational Fission

e Fi1ssion can be a smooth transition for a rubble pile

* Energy and AM are 1deally conserved, but are

decomposed:

— Kinetic Energy
1 1 1 1 M, M, ,
— " I . — — . I . — . I . I R
w lorw=gw-Iirwtow I w 2]\/[1_‘_]\/!2( w)

— Potential Energy

Upo = Uy1 + Uz + Ujo

— The mutual potential energy 1s “liberated” and serves as a conduit
to transfer rotational and translational KE

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 39



Rotational Fission

Uoo
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Rotational Fission @
Upo = U1 +Uoo + U1o

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 40



Orbital Evolution @

ATrot T AT’cra,ns + Ao =0

L{22 — (Constant

L{11 — (Constant

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 41



Free Energy

* The “free energy” of the system controls the final system state:
EFree = F — ull T Z/{22

1 - MMy
EFree:§ wi 11 w1 +wa-Io-ws A M1—|—M2V.V + U9

— If disruption occurs, the mutual potential goesto 0:  f19 — (0
— If Eg...> 0, system can “catastrophically disrupt”

— If Eg,.. < 0, system cannot “catastrophically disrupt” — Hill Stable

—If 0 < Eree << 1 escape leads to a slowly rotating primary

1
5(,01'[1'(,01 <<1

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 4?2



Itokawa

Release 051101-1 ISAS/JAXA
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Itokawa Post-Fission Dynamics

' . L) L L) l

'Movie courtesy of S. Jacobson

500 -

- Minimum Energy Fission Configuration

-500 -

y |m)

| RN DR NN SR SN SN NN NN SN SN NN SN SN SN SN SN SN S |

- 1(""‘\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
~2000 ~ 1000 0 1000 2000

® Total system energy 1s negative but near zero, disruption impossible
® Re-impact 1s possible if initial Energy 1s larger than fission energy

® Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts
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Itokawa Post-Fission Dynamics

' . L) L L) '

"Movie courtesy of S. Jacobson

500 F

Minimum Energy Configuration
at same Angular Momentum

y |m)

-500 -

| RN DR NN SR SN SN NN NN SN SN NN SN SN SN SN SN SN S |

~ 1000 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
~2000 - 1K) 0 1000 2000

® Total system energy 1s negative but near zero, disruption impossible
® Re-impact 1s possible if initial Energy 1s larger than fission energy

® Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 44



Itokawa Post-Fission Dynamics

1(“’.,‘::’ L} L) L Ll l L L L L ' Ll L L Ll l L
' Movie courtesy of S. Jacobson ‘
-
500 -
-
-500 -
- 1(""‘\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1
2000 ~ 100 0 1000 2000
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1999 KWw4

e Contact binary with Alpha and Beta resting on each other
will fission at a spin rate > 4 hours

D.J. Scheeres, A.
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Hill Stability in the 3BP

e In the point-mass 3-body problem Hill Stability (1.e.,
completely bounded motion) 1s difficult to establish

— Due in part to the unbounded amended potential

— Examples arise from KAM theory and the Circular Restricted 3-BP
e For the finite density 3-body problem, conditions for Hill
Stability can be proven easily for multiple situations

— Arise as the mutual potential between 2 bodies 1s bounded from below:

U = ZZ/{Z] U . = i, ~ Mg
(/ T -
i1<j dij Ty + T
— Then if body k escapes, 7;r — OO and:
T — 00 Ui — 0 Vi E— Y U

——- (i<§)#k
J body k can’t escape!

47



Hill Stability for the F3BP @

e Assuming m3z < my < m; it is easy to prove that:

119

—-B: If E < All motion 1s bounded
T+ T2

—~HE3: If e < I/ Body 3 can escape
1+ T2

—HE2: It s < F/ Body 2 or 3 can escape
r1 + T3

—HE1: If A < F Body 1,2 or 3 can escape
o + T3

~H: If 0< Lk All bodies can mutually escape

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 48



Energy / Angular Momentum Chart

==

(1/2,1/3,1/6)

-0.4

-0.45
DJ. Scheges, A. Richard Seebass Chair, Univergr)oé Colorado at Boulder O 1 O 1 5 49 02




1/3
0.3

0.2

HE;

HE3
OO o
(1/2,1/3,1/6)
|
1/3

| | * |
0.5 0.6 <)<>().7 0.8 0.9



-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

HE1

ER123 -> EA12-3 & EA32-1

HE2

0.05 0.1

0.15

0.2



1/3
0.3

0.2

HE;

(o @

(1/2,1/3,1/6)

1/3

| Q@ L 2~ H
0.5 0.6 7 0.8 0.9




O | | |
ER132 -> EA13-2 & EA23-1

-0.05 I m
HE1

0.1 -
HE2 -

-0.15 |- U .

-02 —
HE3
’ (00

-0.25 I -

-0.3 | ! '

0 0.05 0.1 0.15 0.2



Yoo

03 =
HE:
0.2
(RO *

(1/2,1/3,1/6)

0.1
|
0
1/3 0.5 0.6




-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

HE1

ER312 -> EA31-2 & EA21-3

HE2

HE3

0.05

0.1

0.15

0.2



1/3
0.3

0.2

0.1

HE;

L4 ®

(1/2,1/3,1/6)
HE,

1/3

| | |
0.5 0.6 QC% 0.8 0.9




T T 0
-0.05
1 -0t
-0.15
%/,4—_ oz b
0.25

. . 0
To.05
101k

%-0.15 .
=U. - - .
0.35 |-

(1/3,1/3,1/3) | |

(1/2,1/3,1/6) |

0.25 |
-03
35 [

s
/

/

(2/3,1/6,1/6)

-0.45
\ 0.2 0

=

/ e
(5/12,5/12,1/6)

>

1
/ 0.15

] 1
0.04 0.06

y

-0.08 -
-0.1 /
-0.12
14 L

(0.9, 0.05,0.05)

1(0.4875,0.4875,0.025) |

1.[(0.925,0.05,0.025)




Hill Stability tor N body systems

System Energy of an ~ Gravitational Potential Energy Minimum Potential

N-Body Problem for Finite Density Bodies
N-1 N
1 U,,(N)= min U
B=T+Uu  u=-Y 3 - =
i=1 j=i+1 °

e A Configuration of P components with gi;i = 1, 2, ... P bodies in
each component 1s Configuration Hill Stable 1f none of these
components can mutually escape to infinity.

* A given configuration of P components with g;bodies in each
component 1s Configuration Hill Stable 1f

P U (2) = — U, (4) = —6
B < ZZ/{m(C]Z)

U, (3) = -3  Up(5) > —10

— Since the distance between bodies 1s bounded, there 1s a minimum
gravitational potential energy, which restricts escape.

See: D.J. Scheeres. 2016. “Hill Stability of Configurations in the Full N-Body Problem,” in Asteroids:
New observations, New models, Proceedings of the International Astronomical Union 318: 128-134.



Fission and Escape for N Bodies @

 Given N bodies, a Configuration 1s a collection of these bodies
into P groups, with each group having a set number of bodies g..

N-Body Configurations (P:q1,q2, ..., qp)

N=2M=2

(1:4) ©
0@ 1) | O(Q) OO : (2:3,2)
N=3 M=3 OO ( ) 00 @ O 3:3.1,D
&9 (13) 8 8c22 3 8 @ 221
© @ 321, (4:2.1,1,1)
80 (2:2,1) 8 8 B
000 @ Q0000
QO® 3:1,1,1) 4:1,1,1,1) (5:1,1,1,1,1)



Energy Limits for N =2,3,4

N=2
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Energy Limits for N =5
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Summary

e Study of asteroids leads directly to study of minimum
energy configurations in Celestial Mechanics 1in granular
mechanics-types of situations

— Only possible for bodies with finite density

* For finite density bodies, minimum energy and stable
configurations are defined as a function of angular
momentum by studying the amended potential:

H2

EZQIH |Z/[

— only a function of the internal, relative system configuration

— Globally minimum energy configurations seem to be denumerable

e Simple few body systems can be fully explored

— Need theories for polydisperse grains and N >> [

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 63
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Minimum Energy Configurations in the N-body Problem - Talk by
Daniel Scheeres

Lecture notes (Ori S. Katz)

October 11, 2018

Abstract

Celestial Mechanics systems have two fundamental conservation principles: conservation of momentum and
conservation of (mechanical) energy. Of the two, conservation of momentum provides the most constraints on
a general system, with three translational symmetries (which can be trivially removed) and three rotational
symmetries. If no external force acts on the system, these quantities are always conserved independent of the
internal interactions of the system. In contrast, conservation of energy involves assumptions on both the lack of
exogenous forces and on the nature of internal interactions within the system. For this reason energy is often
not conserved for “real” systems that involve internal interactions, such as tidal deformations or impacts, even
though such systems conserve total momentum. Thus, mechanical energy generally decays through dissipation
until the system has found a local or global minimum energy configuration that corresponds to its constant
level of angular momentum. This observation motivates a fundamental question for celestial mechanics: What
is the minimum energy configuration of a N-body system with a fixed level of angular momentum? It can
be shown that this is an ill-defined question and has no answer for traditional point-mass celestial mechanics
systems. If, instead, the system and problem are formulated accounting for finite density distributions this
question becomes well posed and we can prove the existence of minimum energy configurations for all suitably
formulated celestial mechanics systems (Scheeres, CMDA 113(3): 291-320, 2012). This small change also leads
to fundamental changes in the nature and stability properties of relative equilibria and, ultimately, the dynamics
of these systems. Finally, we can also show that this naturally leads to a “granular mechanics” extension of
celestial mechanics, with fundamental links between this topic and the science of small solar system bodies.

1 Lecture notes

We're interested in the mechanics of small asteroids.

Stepping back, asteroids look like self-gravitating rocks. We can assume they are cohesionless collections of rocks
resting on each other.

What is the expected configuration? How will they reconfigure themselves if the angular momentum changes
with time, on account of, for example, sunlight inserting torque into the system? This would account for a very
slow and gradual change of angular momentum.

These asteroids form into multi-component systems, for example binary asteroids.

Mathematical challenge - develop a realistic model for such systems. The approach is the N-body problem
of gravitationally interacting rigid bodies. Must account for finite density, allowing for contact mechanics and
minimum energy configurations.

The goal is to track the stable system configurations as a function of angular momentum to identify transitions,
and put rigorous constraints on them.

Background: celestial mechanics of point mass bodies. If we force this system to dissipate energy, it will at some
point violate some of its conservation constraints.

Celestial mechanics of finite density bodies - the system inherits the N-body conservational principles, but are
subject to surface and tidal forcing, enabling a natural energy dissipation mechanism. This allows for resting
equilibria to exist. It is important to treat this carefully to get a physical model as the momenta themselves deviate
from initial values.

The Lagrangian can be expressed in terms of the potential energy U/, the kinetic energy T and the total angular
momentum H.

Then, the system can be reduced by transforming to a frame rotating with the total angular momentum. Due
to AM conservation the angle itself is ignorable, and Routh reduction yields an amended potential, that can be
generalized to account for non-holonomic interactions, for example if the bodies roll on each other.



Obtain the amended potential
H2
E=—+4U,
21y
where Iy is the instantaneous moment of inertia of the entire system.

This is distinct from the usual amended potential £ = %’H, -I7'-H 4+ U, but produces the same results.

The full N-body problem - using the amended potential.

The total energy of the system is E = T 4+ &, so £(Q) < E. The relative equilibria and their stability are
analyzed through £ as a function of a minimal coordinate set.

Differences between this and a point mass relative equilibrium: The moment of inertia Iy is different, as is the
potential energy. The stability condition is not used generally in celestial mechanics because it is never satisfied for
N > 3.

The finite-density relative equilibria - the equilibrium has two different forms, unconstrained and constrained.
Thus, for the equilibrium to exist in the constrained case, the perturbation must be positive. In the finite-density
case, given dissipation the system will always approach a relative equilibrium.

Finite density properties - the energy density is compact and bounded, therefore minimum energy configurations
exist for any N. Basically, at one point the masses touch each other and we get to the bottom of the well.

Minimum energy configurations of the spherical full body problem - Gravitational potential remains the same
as point masses, but we have to account for the moment of inertia for each sphere. Even for the two-body problem,
this dramatically changes the structure of minimum energy configurations.

Thus, very different behaviors between the point mass case and the finite density case for the 2-body problem.
In the point mass case, there is only one stationary orbit energy configuration. In the finite density case, if the
angular momentum is too low, there are no orbits and the bodies rest on each other. For high enough angular
momentum energy configurations - a bifurcation to 2 stationary orbit energy configurations per AM value.

Assuming the planar problem, constant density spheres, and normalizing the system so that the sum of radii
and the sum of masses are 1, the configuration space can be described by a diagram - mj + mgs + m3 = 1 so every
point in the diagram corresponds to a different configuration. We can restrict all cases to the lower half triangle in
which my > mg > ms.

Planar problem - get an additional 23 planar equilibria to the classical five equilibria from the three body point
mass problem - the Euler and Lagrage sets. The equilibria can be looked at as a function of unconstrained degrees
of freedom - the new equilibria arise from the fact that as soon as we let two of these bodies touch each other, we
reduce the number of degrees of freedom and change the structure and number of unconstrained degrees of freedom.

Overall - 28 equilibria for planar 3 body. None of them are stable for any value of AM, no matter what the
masses and mass ratios are. But some are stable for certain sets of AM values and mass ratios. The five point-mass
equilibria are still unstable.

Transitions from a stable relative equilibria to unstable relative equilibria - interesting because this relates to
energy dissipation resulting in a perhaps stable state transitioning to an unstable equilibrium in a new energy regime
in which additional stable equilibria exist.

Increasing AM can cause a transition from stable to unstable and vice versa, depending on configuration.

Eventually obtain detailed bifurcation charts. As the angular momentum goes to infinity, there are stable
configurations.

Recalling initial trangle -the axis lines are m; = mgo, ma = m3, mg = mi. The green line marks the resting
central configuration.

What happens at a bifurcation point where a resting configuration no longer exists? There is a stable relative
equilibrium that still exists.

Movies - Right - rotating with center of mass. Can teach us about formation of asteroids.

Diagram - unstable and stable ER 132 sequence - always a minimum energy configuration. Along the small
green line, stays stable.

Equal densities - if there are different densities the diagrams change a lot and there are more things that can be
studied.

Can do the same analysis for all types of equilibria.

The bifurcation framework uses the energy-angular momentum & — H? diagram - H? because then the lines
of changing configurations are linear. We can use these diagrams to depict what happens to stability of different
configurations. Transitioning between stable types the straight line breaks and transitions to a different line, and
there is some excess energy that manifests as complex dynamics.



In the direction of reducing the angular momentum, when the system transitions from one stable type to another,
the energy collapses down and the system dissipates energy through some mechanism, for example tidal forces..

So this can be used to trace out how the systems form around each other. Movie - at excess energy point.

Finite density 4-body problem - more tiresome.

They are all energetically unstable. 7?7

What happens after fission - after the systems break apart and start rotating around each other?

2-component rotational fission can be a smooth transition.

Free energy - total energy at which bodies split minus self potentials.

If disruption occurs and the bodies separate, the mutual potential goes to 0. Thus the sign of Ef... determines
whether or not the system can “catastrophically disrupt”. So disruption vs. equilibrium depends on rate of energy
dissipation.

This is used practically by looking at measurements of asteroids that were close to each other some time ago.

Different diagrams for different configurations.

Fission and escape for N bodies.

2 Questions

- If you have 2 bodies with more complicated shapes, how would you calculate the potential?
For 2 polyhedra, for example, there are no closed form formulas, but can be calculated up to any order, and
since any shape can be approximated by polyhedra then any shape can be considered.

- Why are there minimum energy configurations for 2 point masses?
In the reduced case, fixing angular momentum limits the distance between the two point masses.

- From the last movie with the grains, how do we model that?

Realm of granular mechanics. Paul Sanchez is the expert in simulating granular materials. There are several
different ways, the method in the movie is a soft sphere method - hits are accompanied by dissipation and spring
energy - this is a very realistic model. However it is hard to get a good explanation of what happens in these large
scale systems, and they take a long time to compute.

- In the many body case, do we see the phenomena and collective effects and could we come up with a mean
field theory, like you would do in stellar dynamics - statistical approach?

These sorts of approaches could be possible. Could calculate which areas in phase space are more densely pop-
ulated. One example - asteroids that integrated backwards come together to the same area, this is indicative of a

many body configuration.

- Are there examples of triple asteroids in the solar system?
Lots of binary asteroids - 50 %. A much smaller - but still exist - 3 asteroids. A few 4- and 5-asteroid systems

are known.



