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Plasmas are ionized gases.



Plasmas are ionized gases.

Weakly-coupled plasmas are especially common:

Weakly-coupled plasmas satisfy

⇤p = n�3D � 1,

where the Debye length is

⇤D =

✓
T

4⇡e2n

◆
1/2

.



Most plasmas emit light.

Mean-field radiation:

As 1/⇤p ! 0, plasma behaves as continuous medium )
mean-field radiation driven by

J(x , t) =
X

�

en(x , t)u(x , t)

⇢(x , t) =
X

�

en(x , t),

where n,u are local number density and fluid velocity.



Most plasmas emit light.

Bremsstrahlung radiation:

Strongest discrete particle e↵ect contributing to radiation is
Bremsstrahlung radiation.



But some don’t!

The purpose of this talk

(1) Argue that there are dark plasmas

(2) Describe basic features of dark plasmas



Outline for rest of talk

Part I. Why are there dark plasmas?

collisionless plasma dynamics as fast-slow system
dark plasma as motion on the slow manifold

Part II. Properties of dark plasma

low-order truncations of slow dynamics
dark plasma as a Hamiltonian system



Part I: Why are there dark
plasmas?



Bremsstrahlung is weak in rarefied, hot plasmas.

Collision frequency in weakly-coupled plasmas:

Two-body collisions occur at a rate

⌫ =
ln⇤p

⇤p
!p / n

T 3/2
,

where the plasma frequency is

!2

p =
4⇡e2n

m



But are there collisionless plasmas without mean-field
radiation?

Fundamental collisionless plasma model: Vlasov-Maxwell system

@t f +r · (v f ) +rp · (e[E + c�1

v ⇥ B]f ) = 0

c�1@tB = �r⇥ E

c�1@tE = r⇥ B � 4⇡c�1(J � JH)



But are there collisionless plasmas without mean-field
radiation?

Fundamental collisionless plasma model: Vlasov-Maxwell system

v =
p

m
p
1 + |p|2/(mc)2

=
p

�m

J =
X

�

e

Z
v f d3

p

⇢ =
X

�

e

Z
f d3

p



But are there collisionless plasmas without mean-field
radiation?

Fundamental collisionless plasma model: Vlasov-Maxwell system

Q ⇡ S1 ⇥ S1 ⇥ S1: spatial domain

E 2 ⌦1

T � ⌦1

L: vector field on Q in H(curl) with
EH =

R
Q E d3

x/
R
Q d3

x = 0

B 2 ⌦2

T : vector field in curl(H(curl))

f 2 L1(T ⇤Q): integrable function on T ⇤Q ⇡ Q ⇥ R3

c : speed of light in vacuum



But are there collisionless plasmas without mean-field
radiation?

Hodge decomposition of H(curl):

There is an L2-orthogonal direct-sum decomposition

H(curl) = ⌦1

T � ⌦1

L � ⌦1

H

u 2 H(curl) = uT + uL + uH

where

⌦1

T = curl†(H(div))

⌦1

L = grad(H1)

⌦1

H = ker(�)



There are!



Here’s why:



The argument comes from dynamical systems theory.

1 For small c�1, Vlasov-Maxwell is a fast-slow
system

) There is a slow manifold in VM phase space
2 Dynamics on slow manifold does not contain
light waves

) Dynamics on slow manifold is dark!



Rudiments of fast-slow systems
theory



What is a fast-slow system?

Definition: (Fast-slow dynamical system)

Let X ,Y be Banach spaces and ✏⌧ 1. A fast-slow dynamical
system is an ODE on X ⇥ Y of the form

✏ẏ = f (x , y)

ẋ = g(x , y)

with Dy f (x , y) : Y ! Y an isomorphism when (x , y) 2 f �1({0}).



What is a fast-slow system?

Definition: (Fast-slow dynamical system)

Let X ,Y be Banach spaces and ✏⌧ 1. A fast-slow dynamical
system is an ODE on X ⇥ Y of the form

✏ẏ = f (x , y)

ẋ = g(x , y)

with Dy f (x , y) : Y ! Y an isomorphism when (x , y) 2 f �1({0}).

Convention:

y is called the fast variable, x the slow variable.



Invariant manifolds parameterized by slow variables satisfy
a non-linear PDE

Lemma 1: (invariance equation)

Suppose a fast-slow dynamical system admits an invariant
manifold S✏ of the form

S✏ = {(x , y) 2 X ⇥ Y | y = y⇤✏ (x)}

for some smooth map y⇤✏ : X ! Y . Then the invariance equation

✏Dy⇤✏ (x)[g(x , y
⇤
✏ (x))] = f (x , y⇤✏ (x)),

holds for each x 2 X .



Slow manifolds are formal power series solutions of
invariance equation

Definition: (slaving function)

A slaving function y⇤✏ = y⇤
0

+ ✏y⇤
1

+ ✏2y⇤
2

+ . . . is a formal power
series solution of the invariance equation.



Slow manifolds are formal power series solutions of
invariance equation

Definition: (slaving function)

A slaving function y⇤✏ = y⇤
0

+ ✏y⇤
1

+ ✏2y⇤
2

+ . . . is a formal power
series solution of the invariance equation.

Definition: (slow manifold)

Let y⇤✏ be a slaving function. An n’th-order slow manifold is a

submanifold S (n)
✏ ⇢ X ⇥ Y of the form

S (n)
✏ = {(x , y) | y = (y⇤

0

+ · · ·+ ✏nyn)(x)}.



Slow manifolds are formal power series solutions of
invariance equation

Definition: (slaving function)

A slaving function y⇤✏ = y⇤
0

+ ✏y⇤
1

+ ✏2y⇤
2

+ . . . is a formal power
series solution of the invariance equation.

Definition: (slow manifold)

Let y⇤✏ be a slaving function. An n’th-order slow manifold is a

submanifold S (n)
✏ ⇢ X ⇥ Y of the form

S (n)
✏ = {(x , y) | y = (y⇤

0

+ · · ·+ ✏nyn)(x)}.

Definition: (slow system)

Given a fast-slow system and a slaving function y⇤✏ , the associated
slow system is the formal power series ẋ⇤✏ = g(x , y⇤✏ (x)).



Slow manifolds are formal power series solutions of
invariance equation



There is at most one slaving function

Theorem 2:

If y⇤✏ = y⇤
0

+ ✏y⇤
1

+ ✏2y⇤
2

+ . . . is a slaving function, then the
coe�cients y⇤k are unique. Moreover, they may be explicitly
computed using:

0 = f (x , y⇤
0

(x))

y⇤
1

(x) = (Dy f (x , y
⇤
0

(x)))�1

h
Dy⇤

0

(x)[g(x , y⇤
0

(x))]
i

y⇤
2

(x) = (Dy f (x , y
⇤
0

(x)))�1


Dy⇤

1

(x)[g(x , y⇤
0

(x))]

+ Dy⇤
0

(x)
h
Dyg(x , y

⇤
0

(x))[y⇤
1

(x)]
i
� 1

2
D2

y f (x , y
⇤
0

(x))[y⇤
1

(x), y⇤
1

(x)]

�

y⇤
3

(x) = (Dy f (x , y
⇤
0

(x)))�1[. . . ]

. . .



Vlasov-Maxwell
as a fast-slow system



Small parameter is ✏ = c�1.

Scaled Vlasov-Maxwell system

@t f +r · (v f ) +rp · (e[E + c�1

v ⇥ B]f ) = 0

c�1@tB = �r⇥ E

c�1@tE = r⇥ B � 4⇡c�1(J � JH)



Small parameter is ✏ = c�1.

Scaled Vlasov-Maxwell system

@t f +r · (v✏f ) +rp · (e[E + ✏v✏ ⇥ B]f ) = 0

✏@tB = �r⇥ E

✏@tE = r⇥ B � 4⇡✏(J✏ � (J✏)H)



Slow variables are EL and f .

Definition: (slow variables for VM)

The space of slow variables is

X = L1(T ⇤Q)⇥ ⌦1

L 3 (f ,EL)



Fast variables are ET and B.

Definition: (fast variables for VM)

The space of fast variables is

Y = ⌦1

T ⇥ ⌦2

T 3 (ET ,B)



Weakly-relativistic VM is a fast-slow system on X ⇥ Y .

VM as a fast-slow system

Fast variable evolution equations (✏ẏ = f (x , y)):

✏@tET = r⇥ B � 4⇡✏(J✏)T

✏@tB = �r⇥ ET

Slow variable evolution equations (ẋ = g(x , y)):

@t f = �r · (v✏f )�rp · (e[E + ✏v✏ ⇥ B]f )

@tEL = �4⇡(J✏)L



Weakly-relativistic VM is a fast-slow system on X ⇥ Y .

Lemma:

Set

�y = (�ET , �B) 2 ⌦1

T ⇥ ⌦2

T

C = curl

G = (� | ⌦1

T � ⌦1

L)
�1.

We have

Dy f0(x , y)[�y ] =

✓
0 C

�C 0

◆✓
�ET

�B

◆

(Dy f0(x , y))
�1[�y ] =

✓
0 GC

�GC 0

◆✓
�ET

�B

◆



In fast time ⌧ = t/✏, leading-order dynamics is light-wave
propagation.

Leading-order dynamics in fast time:

Fast variable evolution equations:

@⌧ET = r⇥ B

@⌧B = �r⇥ ET

Slow variable evolution equations:

@⌧ f = 0

@⌧EL = 0



In fast time ⌧ = t/✏, leading-order dynamics is light-wave
propagation.

Leading-order dynamics in fast time:

Fast variable evolution equations:

@⌧ET = r⇥ B

@⌧B = �r⇥ ET

Slow variable evolution equations:

@⌧ f = 0

@⌧EL = 0

Vacuum light wave propagation!



Therefore dynamics on slow manifold is dimly lit.



Therefore dynamics on slow manifold is dimly lit.



Part II: Properties of dark
plasma



I will describe two features of dark plasma dynamics

(1) Low-order approximations of dark
plasma dynamics

(2) Dark plasma dynamics is
Hamiltonian



I will describe two features of dark plasma dynamics

(1) Low-order approximations of dark
plasma dynamics

(2) Dark plasma dynamics is
Hamiltonian



Leading-order dark motions governed by Vlasov-Poisson

Theorem: (leading-order slaving function)

The 0’th-order coe�cient in the slaving function y⇤✏ = (E ⇤
T ✏,B

⇤
✏ ) is

given by

E

⇤
T0

(x) = 0

B

⇤
0

(x) = 0

where x = (f ,EL) 2 L1(T ⇤Q)⇥ ⌦1

L.



Leading-order dark motions governed by Vlasov-Poisson

Theorem: (leading-order slow system)

The leading-order coe�cient in the slow system ẋ⇤✏ = (ḟ ⇤✏ , Ė
⇤
L✏) is

given by

ḟ ⇤
0

(x) = �r · (v
0

f )�rp · (eELf )| {z }
Coulomb force

(1)

Ė

⇤
L0(x) = �4⇡⇧L

X

�

e

Z
v

0

f d3

p (2)

where v

0

= p/m and ⇧L : H(curl) ! ⌦1

L is the L2-orthogonal
projection.



Leading-order dark motions governed by Vlasov-Poisson

Connection with the Poisson equation:

By leading-order Vlasov equation (1)

@t⇢+r · J
0

= 0.

Therefore the divergence of leading-order Ampére equation (2)
implies

@t (r · EL � 4⇡⇢) = 0

, r · EL = 4⇡(⇢� ⇢H) + 4⇡⇢
ext

,

where ⇢
ext

is arbitrary time-independent function with (⇢
ext

)H = 0.



First-order slaving function captures magnetostatic fields

Theorem: (first-order slaving function)

The 1’st-order coe�cient in the slaving function y⇤✏ = (E ⇤
T ✏,B

⇤
✏ ) is

given by

E

⇤
T1

(x) = 0

B

⇤
1

(x) = �4⇡GC
X

�

e

Z
v

0

f d3

p

where x = (f ,EL) 2 L1(T ⇤Q)⇥ ⌦1

L.



First-order slaving function captures magnetostatic fields

Theorem: (first-order slow system)

The 1’st-order coe�cient in the slow system ẋ⇤✏ = (ḟ ⇤✏ , Ė
⇤
L✏) is

given by

ḟ ⇤
1

(x) = 0 (3)

Ė

⇤
L0(x) = 0. (4)



First-order slaving function captures magnetostatic fields

Connection with Biot-Savart:

The leading-order contribution to the magnetic field
B

⇤
✏ = ✏B⇤

1

+ O(✏2) satisfies the magnetostatic equation:

r⇥ B

⇤
1

= 4⇡(J
0

)T .

If our spatial domain was Q = R3 instead of Q = T 3, then B

⇤
1

would be given by the Biot-Savart law:

B

⇤
1

(r) =

Z

R3

(J
0

)T (r 0)⇥ (r � r

0)

|r � r

0|3 d3

r

0



Second-order slaving leads to a piezoelectric field.

Theorem: (second-order slaving function)

The 2’nd-order coe�cient of the slaving function y⇤✏ = (E ⇤
T ✏,B

⇤
✏ ) is

given by

E

⇤
T2

(x) = G⇧T!
2

pEL � 4⇡G⇧T

X

�

er · T
0

| {z }
piezoelectric field

B

⇤
2

(x) = 0

where the stress tensor T
0

is given by

T
0

=

Z
v

0

v

0

f d3

p.



Second-order slaving leads to a piezoelectric field.

Figure: Piezoelectric acoustic guitar pickup



Second-order slow dynamics gives Darwin’s correction to
Coulomb force

Theorem: (second-order slow system)

The 2’nd-order coe�cient in the slow system ẋ⇤✏ = (ḟ ⇤✏ , Ė
⇤
L✏) is

given by

ḟ ⇤
2

(x) = �r · (v
2

f )�rp · (e[E ⇤
T2

+ v

0

⇥ B

⇤
1

]f )
| {z }
Darwin’s correction to Coulomb

(5)

Ė

⇤
L2(x) = �4⇡

X

�

e

Z
v

2

f d3

p. (6)

where

v

2

= �1

2

|p|2

m2

p

m



Second-order slow dynamics gives Darwin’s correction to
Coulomb force



Second-order slow dynamics gives Darwin’s correction to
Coulomb force



I will describe two features of dark plasma dynamics

(1) Low-order approximations of dark
plasma dynamics

(2) Dark plasma dynamics is
Hamiltonian



Why is dark plasma dynamics Hamiltonian?

They receive hand-me-downs
from their big brother



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G



Why is dark plasma dynamics Hamiltonian?



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G

P̃ has a G -invariant symplectic form ⌦ = �d⇥



Why is dark plasma dynamics Hamiltonian?



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G

P̃ has a G -invariant symplectic form ⌦ = �d⇥

VM dynamics on P lifts to G -invariant
Hamiltonian dynamics on P̃



Why is dark plasma dynamics Hamiltonian?



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G

P̃ has a G -invariant symplectic form ⌦ = �d⇥

VM dynamics on P lifts to G -invariant Hamiltonian dynamics
on P̃

S✏ ⇢ P lifts to G -invariant invariant set S̃✏ ⇢ P̃



Why is dark plasma dynamics Hamiltonian?



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G

P̃ has a G -invariant symplectic form ⌦ = �d⇥

VM dynamics on P lifts to G -invariant Hamiltonian dynamics
on P̃

S✏ ⇢ P lifts to G -invariant invariant set S̃✏ ⇢ P̃

S̃✏ is a symplectic submanifold in (P̃ ,⌦)



Why is dark plasma dynamics Hamiltonian?



Why is dark plasma dynamics Hamiltonian?

P = X ⇥ Y is equal to P̃/G

P̃ has a G -invariant symplectic form ⌦ = �d⇥

VM dynamics on P lifts to G -invariant Hamiltonian dynamics
on P̃

S✏ ⇢ P lifts to G -invariant invariant set S̃✏ ⇢ P̃

S̃✏ is a symplectic submanifold in (P̃ ,⌦)

) S✏ = S̃✏/G is a Poisson manifold



Why is dark plasma dynamics Hamiltonian?



What is the enlarged phase space P̃?

Let T ⇤Q0 be a di↵eomorphic copy of T ⇤Q



What is the enlarged phase space P̃?

Let T ⇤Q
0

be a di↵eomorphic copy of T ⇤Q

P̃ = Di↵(T ⇤Q
0

,T ⇤Q)⇥ (⌦1

T ⇥ ⌦1

L)⇥ (⌦1

T ⇥ ⌦1

L)



What is the enlarged phase space P̃?

Let T ⇤Q
0

be a di↵eomorphic copy of T ⇤Q

P̃ = Di↵(T ⇤Q
0

,T ⇤Q)| {z }
Lagrangian configuration maps

g :T⇤Q
0

!T⇤Q

⇥(⌦1

T ⇥ ⌦1

L)⇥ (⌦1

T ⇥ ⌦1

L)



What is the enlarged phase space P̃?

Let T ⇤Q
0

be a di↵eomorphic copy of T ⇤Q

P̃ = Di↵(T ⇤Q
0

,T ⇤Q)⇥ (⌦1

T ⇥ ⌦1

L)| {z }
electric fields

E=ET+EL

⇥(⌦1

T ⇥ ⌦1

L)



What is the enlarged phase space P̃?

Let T ⇤Q
0

be a di↵eomorphic copy of T ⇤Q

P̃ = Di↵(T ⇤Q
0

,T ⇤Q)⇥ (⌦1

T ⇥ ⌦1

L)⇥ (⌦1

T ⇥ ⌦1

L)| {z }
vector potentials

A=AT+AL



What is the group G?

Let f̃0 2 ⌦6(T ⇤Q0)
be a reference phase space density



What is the group G?

Let f̃
0

2 ⌦6(T ⇤Q
0

)
be a reference phase space density

G = Di↵f
0

(T ⇤Q
0

)⇥ H1(Q)



What is the group G?

Let f̃
0

2 ⌦6(T ⇤Q
0

)
be a reference phase space density

G = Di↵
˜f
0

(T ⇤Q
0

)
| {z }

˜f
0

-preserving di↵eos ⌘
⌘⇤ ˜f

0

=

˜f
0

⇥H1(Q)



What is the group G?

Let f̃
0

2 ⌦6(T ⇤Q
0

)
be a reference phase space density

G = Di↵
˜f
0

(T ⇤Q
0

)⇥ H1(Q)| {z }
gauge transformations  



What is the group G?

Let f̃
0

2 ⌦6(T ⇤Q
0

)
be a reference phase space density

G = Di↵
˜f
0

(T ⇤Q
0

)⇥ H1(Q)

0

BBBB@

g

ET

EL

AT

AL

1

CCCCA
· (⌘, ) =

0

BBBB@

g � ⌘
ET

EL

AT

AL +r 

1

CCCCA



What is the G -invariant symplectic form ⌦?

Set �Zk = (⇠k , �Ek , �Ak) 2 TP̃



What is the G -invariant symplectic form ⌦?

Set �Zk = (⇠k , �Ek , �Ak) 2 TP̃

⌦(�Z
1

, �Z
2

) =
X

�

Z

T⇤Q
!B(⇠1, ⇠2) g⇤ f̃0

�
X

�

Z

T⇤Q

e

c
(�A

1

· ⇠
2

� �A
2

· ⇠
1

) g⇤ f̃0

+
1

4⇡c

Z
(�E

1

· �A
2

� �E
2

· �A
1

) d3

x



What is the G -invariant symplectic form ⌦?

Set �Zk = (⇠k , �Ek , �Ak) 2 TP̃

⌦(�Z
1

, �Z
2

) =
X

�

Z

T⇤Q
!B(⇠1, ⇠2) g⇤ f̃0

�
X

�

Z

T⇤Q

e

c
(�A

1

· ⇠
2

� �A
2

· ⇠
1

) g⇤ f̃0

+
1

4⇡c

Z
(�E

1

· �A
2

� �E
2

· �A
1

) d3

x

!B = �d✓B
✓B = p · dx + e

cA · dx



What is the Poisson structure on S✏ ⇡ X?

Set F ,G 2 C1(L1(T ⇤Q)⇥ ⌦1
L)



What is the Poisson structure on S✏ ⇡ X?

Set F ,G 2 C1(L1(T ⇤Q)⇥ ⌦1

L)

{F ,G} =
X

�

Z 
�F
�f

� 4⇡e
�F
�EL

· dx

�
· J

0

·

�G
�f

� 4⇡e
�G
�EL

· dx

�
fd6

z



What is the Poisson structure on S✏ ⇡ X?

Set F ,G 2 C1(L1(T ⇤Q)⇥ ⌦1

L)

{F ,G} =
X

�

Z 
�F
�f

� 4⇡e
�F
�EL

· dx

�
· J

0

·

�G
�f

� 4⇡e
�G
�EL

· dx

�
fd6

z

J
0

: canonical Poisson tensor on T ⇤Q



Summary

I. Specially-prepared collisionless plasmas don’t emit light

II. Dark plasmas produce piezoelectric fields

III. Dark plasma dynamics is Hamiltonian



Dark Plasma - Talk by Joshua Burby

Lecture notes (Ori S. Katz)

October 15, 2018

Abstract

Fully ionized plasmas emit both incoherent light and coherent light. Incoherent emission occurs whenever
plasma particles suffer Coulomb collisions, and is therefore ubiquitous. On the other hand, coherent emission
involves macroscopic collections of particles moving in concert. This incoherent emission is well described by
the Vlasov-Maxwell system of equations. In this talk I will argue for the existence of plasmas that are "dark"
in the sense that their coherent emission is extremely weak. The dark plasma motions will be identified with
a slow manifold in the Vlasov-Maxwell phase space. In the case where collisions are extremely rare, I will give
a complete description of the Hamiltonian formulation of dynamics on the slow manifold. In the leading-order
approximation, the dark motions are modeled by the Vlasov-Poisson system of equations. At the next order,
which accounts for magnetostatic effects, the model also has a name: the Vlasov-Darwin system. Higher-order
approximations account for non-radiative electromagnetic fields generated by collective acceleration of plasma
particles. The dark motions may be modeled with any desired order of accuracy without sacrificing the problem’s
underlying Hamiltonian structure.

1 Lecture notes

Note: Not related to dark matter! Just describing plasma that doesn’t emit light.
Weakly-coupled plasmas - many plasma particles in a sphere with radius equaling the Debye length.
Are there collision less plasmas without mean field radiation?
From the first equation, f = distribution function of a single plasma particle in the 6D phase space.
The second equation is the Faraday equation, the 3rd is the Maxwell-Ampere equation.
v is related to p by the relativistic � parameter.
B is the magnetic field.
Hodge decomposition: H (curl) is the space of vector fields on Q.
Small c�1 - weakly relativistic regime. The slow manifold is a formally slow manifold.
Fast-slow systems definition: The assumption on the y derivative of f is technical, allowing us to make calcula-

tions.
Definition - slow manifold - while the definition makes sense for n < 1, we think of this definition as relevant

for n ! 1.
S✏ is a slow invariant set. In general, there can be different types of behavior when perturbing around the slow

manifold - inwards spiral, instability, oscillatory behavior.
Vlasov-Maxwell as a fast-slow system in the weakly relativistic regime. The small parameter is ✏ = c�1. This is

formal, not a physical justification.
Space of fast variables - transverse electric field and magnetic field.
Is this a fast-slow system? We need to show the constraint of the y derivative of f - lemma. Therefore, this is

formally a fast-slow system.
Claim - the slow manifold corresponds to motions without light waves. To show this, we look at the fast motions

by rescaling time ⌧ = t/✏. Thus, on very short time scales f and EL (longitudinal electric field) are frozen in time,
while ET and B satisfy Maxwell’s equations.

So for short time scales, obtain a manifold of fixed points for ✏ = 0 and a slow evolution time-scale for ✏ > 0.
The light waves are a perturbation off of the slow manifold.

Is the invariant manifold attracting? No, it has normal ellipticity, and that’s the reason why this development
must be in a formal asymptotic series. The fact that the slow manifold does not attract is related to the underlying
Hamiltonian structure.

Thus, dark plasma is related to motion along the slow manifold.
Is there a way to modify this to obtain quasi-magneto-plasma effects? Yes, we will talk about this soon.
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Theorem - leading order slow system is related to a Vlasov-Poisson equation set.
Theorem - second-order slaving function - the first term of the transverse electric field is just an artifact. In the

second term, T0 is the stress tensor, thus a piezoelectric field is created. The sum over � is over charged species -
electrons vs. ions, etc.

(Piezoelectric acoustic guitar pickup - a crystal with a piezoelectric property - by stressing the crystal an electric
voltage is created.)

What is the Darwin force? Instantaneous force between two particles scaling like 1 over distance squared, but
it is not directed along the line connecting the two particles. Going up to the next orders, we can get corrections
to the Darwin force, and that’s what we’re working on now.

Why is dark plasma dynamics Hamiltonian? The preimage S̃✏ of the slow manifold S✏ on the large space P̃
with the symplectic form ⌦ is a symplectic submanifold. Therefore, by applying Poisson reduction we can see that
S✏ = S̃✏/G, which means that S✏ is a Poisson manifold.

What is the group G? Fix a 6-form f̃0 2 ⌦6 (T ⇤Q0) and perform the transformation.
What is the G-invariant symplectic form ⌦ on the large space P̃? Set the tangent vector �Zk as a function of

the tangent vectors to the electric vector field �Ek and the magnetic potential vector field �Ak.
What is the Poisson bracket on S✏? It can be calculated explicitly. Note that J0 is the finite-dimensional

canonical Poisson tensor on T ⇤Q.

2 Questions

- Can the dark plasma exist in nature?
How do you prepare a plasma in a particular configuration? It’s typically hard experimentally, but if you have a

device that resonates with electromagnetic waves you could perhaps suck radiation from plasma. Also, this theory
requires motion on a torus.

- Usually, magnetic field is much larger than electric field, is there an alternate ordering scheme where the leading
order is the magnetic term?

There is a way, a version of the same calculation with magnetic effects to leading order is possible.
- What about other waves in plasmas, in particular drift waves?
These other types of waves could be destabilized by the effects, with a possible result of bifurcations along the

slow manifold. But the ordering would have to change in order to see this.
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