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Whiskered Tori in Conformally Symplectic

Conformally symplectic systems

Existence of whiskered tori

Small dissipation limit

Existence of Lindstedt Series and their convergence

Numerical evidence supporting our conjecture

R. Calleja Whiskered Conformally Symplectic



KAM Theory for dissipative systems

Dissipation = many orbits to have the same asymptotic
behaviour = less asyptotic behaviours — adjust
parameters

» A KAM theory with adjustment of parameters was
developed in remarkable and pioneering papers: (Moser
'67, Broer-Huitema-Takens-Braakama ’90,
Broer-Huitema-Sevryuk '96, Simd, ...)

» Conformally symplectic systems are a a subset of
dissipative systems and appear in physics and economics

» In C-Celletti-Llave '13, we developed a KAM throry for
conformally symplectic systems with a different parameter
count that the more general cases of KAM theory
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Conformally symplectic flow

Let Q2 be a symplectic form such that

Qx(u,v) = (u,J(x)Vv)

and X a vector field such that there exists a constant n € R
such that
LxQ =nQ.

The time t flow f; satisfies that

(f)°Q = exp(nt)Q.
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Conformally symplectic mappings

Let Q2 be a symplectic form such that

Qu(u, v) = (1, J(x)V).
A conformally symplectic map f: T” x R"” — T" x R is
fFQ=\Q

for A e R.

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LCc:)ni‘ormally symplectic systems

Conformally symplectic systems transport a symplectic form
into a multiple of itself

» Any Hamiltonian system with friction proportional to the
velocity

» Celestial Mechanics Tial torques (e.g. Biasco, Chierchia, Celletti, Laskar, Correia).

» Hamiltonian chains with energy dissipation (e.g. wayne, Eckmann,

Cuneo)
> AUbry'Mather Theory (e.g. Sorrentino, Maré)
» Euler-Lagrange equations of exponentially dicounted

SyStemS (e.g. Bensoussan, Davini, Fathi, lturriaga, Zavidovique, Siconolfi)
» Gaussian thermostats Non-equilibrium Statistical Mechanics (e.g. Wojtowski and

Liverani).

» Nosé-Hoover model (more Statistical Mechanics)
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Dissipative standard map

An example of a conformally symplectic map
The family £, given by

Yoyt = Mo+ i +e V'(xn)
Xn+1 = Xn + Yni1

v

|Df,| =\

A =1, u = 0 -standard map (symplectic).
0 < A\ < 1 dissipative map.

A > 1 expanding map.

v

v

v
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Parameterization of an invariant circle

Quasi-periodic solutions are orbits of the form

(G, pn) = K(nw), weR\Q )

In such a case, we have

f 0 K(0) = K(0 + w).
wo k()= K0 +w) T F 7 Ke

We will assume

K@ +1)=K()+(1,0)

“non-contractible circles”. N/D

(Haro, Canadell, Figueras, Luque, Mondelo)

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Dissipative Froeschlé Map

Another example in four dimensions
The family f,,, ,,,) given by

yi0 = ) g e VD) + W (), %)
)y = x50 + i),
Y& =y o+ e2 V(X)) + eaW (), x2)
=

is conformally symplectic

Q= \Q
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

meterization of an invariant to

K (T9D)

Figure: The invariance equation f o K () = K(# + w).
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Whiskered tori

» Motion is conjugated to a rotation and many hyperbolic
directions (exponentially contracting in the future or in the
past under linearized evolution)

» Instability for nearly integrable systems (Arnold ‘63, 64, ...)

» Considered many times in the literature (Graff '72, Zehnder
'76, Jorba-Villanueva ’97, Li-Yi '05)
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Whiskered tori in dissipative systems

» Dissipation = many orbits to have the same asymptotic
behaviour — less asymptotic behaviours — one
cannot choose initial conditions to obtain a long term
behaviour (adjust parameters)

» Conformally symplectic is a particular case of more general
methods like (Moser '67, Broer-Huitema-Takens-Braaksma
'90, Broer-Hitema-Sevryuk '96, Canadell-Haro ’17)

» Parameterization method is closer to Llave-Fontich-Sire 09
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Whiskered tori in conformally symplectic systems

» The dimension of hyperbolic directions is as large as
possible given that £, is conformally symplectic

» Conformally symplectic allows to obtain more results that
could be false in the general setting

» Small dissipation is a very singular perturbation

» In center bundle, exponential rates straddle the
conformally symplectic constant
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Spaces of analytic functions

For any p > 0, we denote by T9 the set

TS ={z=x+iyeC¥z%: xeT? |yl <p, j=1,..,d}.

Given p > 0, we denote by A, the set of functions which are
analytic in Int(Tg) and extend continuously to the boundary.

» Anormin A, is

1lla, = sup [f(2)|

d
zeT§

» These spaces are standard in KAM theory
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Whiskered Tori in Conformally Symplectic

LCc:)ni‘ormally symplectic systems

We fix a Diophantine frequency w
lw-k—n|>vlk|™", Vkez9\{0},neN.
The invariance equation for Ky € A,, pia € A

Err(0) = f,, o Ka(0) — Ka(0 + w)

A solution is Ke, pe so that 1, o Ke(8) = Ke(0 + w).
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

FjEDfMoKoEw><DfuoKoTUq)wxw-fouoK,

which are quasi-periodic cocycles of the form

=90 Tj, X X7

with 79 = Df,, o K(6). The cocycle above satisfies the property:
MM =Tl o T, TM.
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Exponential trichotomy

The cocycle admits an exponential trichotomy when we can
find a decomposition

R'=ES®oESeEY, 0cTY,

rates of decay A\_ < \; <A <A, A_ <1<\, anda
constant Cy > 0, such that

veES « [V <CN |v], j>0
[4

veE! « |F(0)v|< CoXN |v|, j<0
0 +

P (0)v] < Co(Ag Ylvl, >0

. ;
v e Ej IF(0)v| < Co(\Y|v|, j<O0.
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Whiskered Tori in Conformally Symplectic

LConi‘ormally symplectic systems

Approximately invariant splittings

Given a splitting E; @ Ef @ ES and a cocycle -y, we define

o0’

Yo" = Ngywelg

so that we conclude that the splitting is invariant under the
cocycle if and only if

73’0/50, o#o.
5% 0 0
Y9 = Df, 0 K(0) = 0 ~° 0
0 0 ’yg’u
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Whiskered Tori in Conformally Symplectic

LCc:mi‘ormally symplectic systems

Es ={veR"v=x+Ajx|xcE]}.

Lemma

Fix an analytic reference splitting on Tg’ and letU be a
sufficiently small neighborhood of this splitting, so that A7 as
with ||AZ|, < M.

Let E be an analytic splitting in the neighborhood U.

Let ~ be an analytic cocycle over a rotation defined on Tg with
7l < M.

Assume that E is approximately invariant under ~, and that ~ is
approximately hyperbolic for the reference splitting.

Then, there is a locally unique splitting E invariant under y
close to E and the splitting E satisfies a trichotomy.

The constants can be chosen uniformly depending only on My,
M.

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

Theorem
» w Diophantine, d < n

> f,: M — M, ueRY, be a family of real analytic,
conformally symplectic mappings

» 0< A< 1

(H1) Appproximate solution:
(Ko, p1o) with Ko : T9 — M, Ky € A, and jig € RY

o © Ko — Ko o Tilla, < Err, Err > 0.

Ve
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Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

(H2) Approximate splitting:

For 0 € Tg, 3 splitting of the tangent space

-depending analytically on the angle

-bundles are approximately invariant under the cocycle

v9 = Dfy, o Ko(0)
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Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

(H3) Spectral condition for the bundles (exponential
trichotomy):
For 6 € ’]I‘g the spaces in (H2) are approximately hyperbolic for

Yo-
(H3') For the almost symplectic limit, we assume:

A<My <Ay, A <A<AL.

(H4) The dimension of the center subspace is 2d.
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Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

(H5) Non—degeneracy:

det S S(Wp)0 +1(M;1 o T,D,f, o Ky) 40
(A—1)d (Mg o T,D.f, 0 Ka)a

(WE)P is the solution of
AW — (W) o Ty = (Mg " o TuDuf 0 Ka)5)°,

N
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Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

Let 0 = o(7) be an explicit number and assume that for some
0 < 6 < p, we have

Erry <EMy(v,, C A A NG, N0 L4,

IDKo|l.4,., (DKG DKo) |4, S|, max  sup [ D'f ),
=012 u—puo| <
g <37Err* (v, 7, C A1, A AE G, IMR0E 4,

|DKo | 4, [|(DKg DKo)~"|l4,, 1S, max  sup || D/fylus).
=012 u—puo| <

where an explicit expression for o, Erry, £rr*.
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Whiskered Tori in Conformally Symplectic

L Existence of whiskered tori

Then, there exists an exact solution (Ke, 1e), such that
frooKe— Koo T, =0
with
[Ke — Kolla,_»s < CEMS™, lpe — po| < CEMrd™T .

Furthermore, the invariant torus K is hyperbolic in the sense
that there is an invariant splitting

Tro(0)M = Eig,0) © Ei.(6) ® Eky(o) -

A —Ae| < CEMS+Errp), |ANE=XEF| < C(Errs= 7 +Erry),
|Co — éo] < C(Errd~ +Errp) .
~ RcCallja  Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LExistem:e of whiskered tori

Sketch of the proof

The centerpiece is,

oo K'(0) — K' o T, (0) = €(0)
The Newton’s equations for K = K + A, i/ = p+ A,
Df, o K(0) A(0) + D,f, 0o K(0) A, — A0 + w) = —e() .

We project to stable/unstable/center subspaces,

AL(0) = M,y A0), €5(0) = My, €(0) With € = s, ¢, u,

Df, 0 K(6) A%(6) + Mgy Dufu o K(O) Ay — A% (0 +w) = —€5(6)

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LExistem:e of whiskered tori

Center direction

AS =M We,

with
Df, o K(6) M(6) = M(6 + ) ( S fl(gz ) +R().
So the equations reduce to

( Igd fl(gj > We(0) — W°o T, (0) = —&°(9) — A°(0)Ar,

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LExistem:e of whiskered tori

Hyperbolic directions

DA (K 0 Ty (0")) AS(T— 0y (6)) + Mgy Dufu (K © T_o (0))A 0 — B3(8") = —8%(8") ,

which can be solved for AS in the form

8

8%(6") =8°(0") + Y (Dlu(K 0 T (6") X -+ x Diju(K 0 T_y(8'))) (T (68)))

=
i

+ nf((ew)ou fu(Ko T_,(0')A,

o0
+3 (DfH(K 0 T_(8')) X o X Dfu(K 0 T_ ke (6")) Mi(g 40 Diufiu (K © Tf(m)w(e’)) Ay,
k=1

The unstable space is similar,

2%(0) = = 3 (D)7 (K(9) x .. x (D) ™" (K © Ty (0))) € (The (6))
k=0
= > (D)7 (K(©O)) X o X (D) ™" (K © Ty (0)) M0 Dua i (K © T (0)) Ay -
k=0

R. Calleja Whiskered Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LSmall dissipation limit

Small dissipation

» The limit of small friction forces is natural in problems of
Celestial Mechanics (Celletti-Chierchia, Correia-Laskar)

» In finance the limit corresponds to small inflation, final
horizon taken to infinity

» In the context of KAM theory it lead to conjectures about
the optimality of the domains on which the tori as functions
of the small dissipative parameter are defined

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LSmall dissipation limit

We consider analytic families of mappings or flows with small
paramerter ¢, and an internal parameter p, so that,

fL.O=A)Q,  A0)=1

and

Lz, . =n(e)Q, n(0)=0

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LSmall dissipation limit

We assume that the conformal factor is an analytic function of ¢

Ae) =14 ag? + O(Je|2T)

we are thinking that ¢ € C, since we want to talk about
differentiability.

Diophantine frequency w
lw-k—n|>v|k|™", VkeZ\{0},neN.
We fix w to be Diophantine by controlling the size of the
constants v, '
y(w; T) = SUpkeZd\{oﬂezmkw —1 |_1 |k|_T < 00

and
V(A(E);w, T) = SUPkeza [0y €77 — A(e)| [k < o0

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LSmall dissipation limit

Dissipative Froeschlé Map

The family f.,, ,.,) given by

Y = (1= 2 4 () + e VD) + W/ (6D, %)
1 1 1

XDy = x4y,

Y@ = (1= Py 4 piale) + 22 VI(XP) + eaW/ (XD, xP)

2 2 2
N )

is conformally symplectic

Q= (1-%Q

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LSmall dissipation limit

Series expansions and geometry of the sets

N N
KEM =3 dK, uEM =3y
=0 i=0

forany N ¢ N
We define the sets

GAw, T, N)={ecC: v(\e)w 1)) - 1N < A}.
and

ANAw,T,Ny={ e C: v(\w)A-1V" <A},

R. Calleja Whiskered Tori in Conformally Symplectic
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LSmall dissipation limit

-+ 0@ -0@

0o Qo

Figure: Sets A and G

Me)=1-¢°
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Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

Existence of Series

Theorem

» w Diophantine v(w; ) < oo
fua0 0 Ko(8) = Ko(6 + w)

» Is a whiskered invariant torus with splitting
Tk(O)M = ER4) ® Egg) ® Ex(y), rates, 2d dimensional
center, and non-degeneracy condition as in the previous
theorem

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

A.1) We find a formal power series expansion KM = Zj'io €K,

MLSM _ Zj,io gjuj forany N € Nand p > 0, we have

||fu[6g/v]’€ o Ka[SN] _ Ka[SN] o Tpr/ < CN|5]N+1 (1)

forsome 0 < p' < pand Cy > 0.
A.2) We can compute four formal power series expansions

A =N "dAT, AN(9): Ef(0) - Errg(0),  o=538ul
i=0

and the A}-’ € A, in such a way that the operators for
invariant dichotomies in the sense of power series.

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

A.3) We can find a set Gy, of ¢ and functions
K:Gn— Ay, p:Gp—C?

which are analytic in the interior of G,, and continous on
the boundary of G,, and such that

fua7aOKa_KaoTw:0~ (2)

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

At every order, the Lindstedt series have a stucture that can be
solved by using the same geometric reduction

(Dfyy0 0 Ko) MoW; — (Mo W) o T, 4 (Dpufug.0 © Ko

= I:j(K07 R3] I{j—'l y 405 "'7,“/'—1) .
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Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

Trivial monodromy (C-Celletti-Llave ’17)

We show that there is no monodromy of these continuations,
either for the tori of for the stable manifolds.

The boundary of the domain is very thin, so that we can
perform a unique analytic continuation of the invariant circles
along closed circles enclosing the points of analyticity.

R. Calleja Whiskered Tori in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

L Existence of Lindstedt Series and their convergence

A dissipative standard map with vanishing dissipation

Y1 = (1 =)y + - +¢ V'(xn)
Xnt1 = Xn + Yn41

is conformally symplectic with

Q= (1 -0

R. Calleja Whiskered Tori in Conformally Symplectic
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LNumerical evidence supporting our conjecture

Numerical evidence (joint wit

. Me) o8 ° . Poles of the series -
06 . B
i 06
04 e N
- 04
BN
02 7 02
s A
) 4 0
02 i 02
s
- 04
04 e ’
o 06
okt
06 - e
- 08 <

Figure: Sets A and G for the dissipative standard map

Yn1 = (1 — ES)Yn + pe + € V/(Xn)

Xnt1 = Xn + yn+1

R. Calleja Whiskere i in Conformally Symplectic



Whiskered Tori in Conformally Symplectic

LNumerical evidence supporting our conjecture

‘Me) .

06 T~ B

04 N 4

04 | . p

- N\

075 08 085 09 095 1 1.05

Sets A and G for the dissipative standard map
Yor1 = (1 =)y + e+ V'(x0)

Xn+1 = Xn + Ynt1
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LNumerical evidence supporting our conjecture

Gevrey Classes of functions

A function f is in a Gevrey class G° whenever there are
constants C and R such that

|DXf(e)| < CR¥Kk

with ¢ in a compact set

R. Calleja Whiskered Tori in Conformally Symplectic
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LNumerical evidence supporting our conjecture

Once we have the Lindstedt series expansion we can obtain
numerical evidence that the funcitons we have are in a Gevrey
class.

We evaluate

’
Ap(k) = - log [|lux(9)l,,
k

K

Figure: Analytic norms of the coefficients of the Linstedt expansion.
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LNumerical evidence supporting our conjecture

Two tools: KAM theory and Lindstedt series.

» Proof for existence of whiskered KAM tori of conformally
symplectic systems

» The proof only requires the existence of an approximate
solution

» The Lindstedt expansions are used to obtain expansions in
complex domains

» We proof the existence of Lindstedt series to every order

» The two tools produce efficient algorithms and we use
them to approximate the domains

» We conjecture that the domains we obtain are close to
optimal

» The compuations support our conjectures

R. Calleja Whiskered Tori in Conformally Symplectic
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LNumerical evidence supporting our conjecture

Thank y

> R.C., Celletti, A. and de la Llave, R., Domains of analyticity of Lindstedt
expansions of KAM tori in dissipative perturbations of Hamiltonian
systems, Nonlinearity 30, (2017) 3151-3202

»> Bustamante, A. and R.C., Computation of Domains of Analyticity for the
dissipative standard map in the limit of small dissipation, preprint:
arXiv_1712.05476

> R.C., Celletti, A., and de la Llave, R., KAM theory for conformally symplectic
systems: Efficient algorithms and their validation, J. Differential Equations
255 (2013)

»> R.C. and Celletti, A., Breakdown of invariant attractors for the dissipative
standard map, Chaos 20, 013121 (2010)
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LNumerical evidence supporting our conjecture

Thank you

o8 > [ —
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Whiskered KAM tori of conformally symplectic systems - Talk by
Renato Calleja

Lecture notes (Ori S. Katz)

October 15, 2018

Abstract

Many physical problems are described by conformally symplectic systems. We study the existence of
whiskered tori in a family f, of conformally symplectic maps depending on parameters p. Whiskered tori
are tori on which the motion is a rotation but having as many contracting/expanding directions as allowed by
the preservation of the geometric structure. Our main result is formulated in an a-posteriori format. Given an
approximately invariant embedding of the torus for a parameter value po with an approximately invariant split-
ting of the tangent space at the range of the embedding into stable/unstable/center bundles, there is an invariant
embedding and invariant splittings for new parameters. Using the results of formal expansions as the starting
point for the a-posteriori method, we study the domains of analiticity of parameterizations of whiskered tori in
perturbations of Hamiltonian Systems with dissipation. The proofs of the results lead to efficient algorithms
that are quite practical to implement.

Joint work with A. Celletti and R. de la Llave.

1 Lecture notes

Outline: Small dissipation limit - relevant for mechanics, celestial mechanics.

KAM theory for dissipative systems: Can explore phase space by varying parameters and looking at asymptotic
behavior.

Conformally symplectic flow: Lie derivative of the symplectic low L£x = 1), can assume for this talk that 7
is constant, although some of the stated results apply also in the non-constant case. If 7 = 0, that is the symplectic
case obtained from Hamiltonian structure. If 7 = 0 the system is dissipating/expanding.

Conformally symplectic mappings: We will discuss maps, although everything here is relevant also for flows.

Dissipative standard map: The parameter p inserts interesting behavior into the map.

Parameterization of an invariant torus: dynamics on the torus are conjugate to a rigid rotation by w, so dynamics
on perfect torus parameterize dynamics on invariant torus.

Whiskered tori: Motion on torus is conjugate to rigid rotation, but at the same time there are directions
exponentially contracting in the future or the past.

Whiskered tori in conformally symplectic systems: Whiskered tori live in a center space which is a conformally
symplectic system, with expanding or contracting directions.

Spaces of analytic functions: We want to have a KAM theorem for the existence of whiskered tori.

What do we need for KAM? Fix a Diophantine frequency w. Need an invariance equation - start with an
approximate solution K, and an approximate parameter p, that make the error from the solution small. So we
start with an approximately invariant torus, and correct it using the Newton method and other methods, until we
obtain a solution K, with the dynamics we were hoping to obtain (invariant torus).

The problem - there are also hyperbolic directions, so we have to look at cocycles I'Y.

Exponential trichotomy: Decompose the phase space to stable Eg , center E(,C and unstable Eéj .

Approximately invariant splittings: This is how we check our cocycle can be thus decomposed.

Theorem: Assumptions will be important to explore the small dissipation limit. (H5) non-degeneracy condition
is reminiscent of the no-twist condition - when the parameter is moved, the rotation number changes as well.

Sketch of the proof: Start with the approximate solution, correct via a Newton-type method.

Center direction: It is possible to get rid of S (0) by a diagonalization, but it turns out that in the non-dissipation
limit where A — 1 this term is important, so it is a good idea to retain it.

Small dissipation: interesting in celestial mechanics because the dissipating forces (tidal) are very small and
slow.



Dissipative Froeschle map: Why ¢3? So that the symplectic case 0 is crossed when ¢ is varied.

The black regions in the AG figure are the problematic regions, they are the boundaries. What happens to the
functions for small € around these boundaries? Trivial monodromy - when going around a boundary, you return to
the same function. This was shown numerically for the dissipative standard map with vanishing dissipation. The
poles of the series align on the boundaries. Looking at the A plot (left plot) obtain balls with a type of self similar
structure.
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