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Outline

• The Vlasov-Maxwell equations o↵er a Hamiltonian description of
the self-consistent interactions between charged particles (mass m
and charge e) and an electromagnetic field

r ·B = 0

r⇥E+ c�1@B/@t = 0
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E = � r� � c�1@A/@t

B = r⇥A

• In this talk, I present the variational (Lagrangian) principles for
exact and reduced (guiding-center and gyrocenter) Vlasov-Maxwell
equations.

• In a generic noncanonical Lagrangian formulation, both the
symplectic (Poisson-bracket) structure and the Hamiltonian
depend on variational fields (�,A;E,B).
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Avertissement

The reader will find no figures in this work. The methods which I
set forth do not require either constructions or geometrical or

mechanical reasonings: but only algebraic operations, subject to a
regular and uniform rule of procedure.

Joseph Louis de Lagrange
Mécanique Analytique (1788)
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Review of Lagrangian & Hamiltonian Dynamics

• Lagrangian dynamics in extended phase space (x,p;w , t)
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� Extended Hamiltonian H = (|p|2/2m + e �)� w = H � w ⌘ 0

� Euler-Lagrange equations (ṫ = 1)
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• Hamiltonian dynamics in extended phase space (x,p;w , t)

� Lagrange bracket !↵� ! Poisson bracket J↵� = {z↵, z�}
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⇣e
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2
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↵^dz� ! J ⌘ !�1

� Extended (noncanonical) Poisson bracket
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� Hamilton equations ! Liouville Theorem (Jacobian J = 1)

ż↵ =
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z↵, H
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Vlasov-Maxwell Equations

• Vlasov equation for Vlasov distribution f (x,p; t)
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@f
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=
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J f ż↵
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� Vlasov equation in extended phase space

F(x,p; t,w) ⌘ f (x,p; t) �
⇣

w � H(x,p; t)
⌘

!
n

F , H
o

= 0

• Maxwell equations (with particle sources)

r ·E(x, t) = 4⇡ % = 4⇡
X

e

Z

p
f (x,p; t)

r⇥B(x, t)� c�1@E(x, t)/@t =
4⇡

c
J =

4⇡
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X

e

Z
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� Source-free Maxwell equations

r ·B(x, t) = 0 = r⇥E(x, t) + c�1@B(x, t)/@t
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Variational Principle for Vlasov-Maxwell Equations

• Vlasov-Maxwell Lagrangian density [Brizard (2000)]

L ⌘ 1

8⇡
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|E|2 � |B|2
�
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p,w
F H

� Hamiltonian variation: �H = e ��

� Constrained Variation for F : Canonical part + Symplectic part

�F ⌘ {�S, F} +
e

c
�A · {x, F}

� Constrained Variation for (E,B):

�E = �r��� c�1@�A/@t and �B = r⇥ �A
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• Variational principle
R

�L d3x dt = 0

�L = �
X

Z

p,w
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• Noether equation

�L =
@

@t
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� Momentum-Energy conservation $ Space-Time symmetry

�S = P · �x � w �t

�� = E · �x � c�1@��/@t

�A = E c�t + �x⇥B + r��

� Gauge variation: �� ⌘ � c�t � A · �x
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� Gauge-variation cancellations
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⇣

P� e

c
A
⌘

· �x �
⇣

w � e �
⌘

�t

= p · �x �
�

|p|2/2m
�

�t ⌘ p · �x � K �t

� Noether Theorem

�L =
@

@t



X

Z

p
f
⇣

p · �x � K �t
⌘

�
⇣

E c�t + �x⇥B
⌘

· E
4⇡c

�

+ r ·


X

Z

p
f
⇣

p · �x � K �t
⌘
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• Energy-momentum conservation laws

@E
@t

+r ·S = 0 =
@P
@t

+ r ·T

� Vlasov-Maxwell energy density and energy-density flux

E =
X

Z

p
f K +

�

|E|2 + |B|2
�

/8⇡

S =
X

Z

p
f ẋ K + c (E⇥B)/4⇡

� Vlasov-Maxwell momentum density and stress tensor

P =
X

Z

p
f p + (E⇥B)/4⇡c

T =
X

Z

p
f m ẋẋ +

I
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4⇡

⇣
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⌘

� Symmetry T ij = T ji ) Conservation of angular momentum
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Guiding-center Vlasov-Maxwell Theory

• Guiding-center Lagrangian one-form [Brizard & Tronci (2016)]

�
gc

=
⇣e

c
A+ pk bb

⌘

· dX+J d✓ � w dt ⌘ e

c
A⇤ · dX+J d✓ � w dt

� Asymptotic decoupling of fast gyromotion (J, ✓) from reduced
guiding-center motion (X, pk).

� Guiding-center Poisson bracket (B⇤ = r⇥A⇤, B⇤
k = bb ·B⇤)

{F , G}
gc

=

✓

@F
@✓
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� @F
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@✓
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+
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✓
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@pk

r⇤G
◆
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k
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◆

where r⇤ ⌘ r� [(e/c) @A⇤/@t] @/@w .
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• Reduced guiding-center equations of motion
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� Guiding-center Jacobian ! Guiding-center Liouville Theorem
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Guiding-center Polarization and Magnetization

• Guiding-center Polarization and Magnetization
(Pfirsch 1984 & Kaufman 1986)

� Guiding-center electric-dipole moment

⇡
gc

=
e bb

⌦
⇥ d

gc

X

dt
= � e

m⌦2

 

µ r?B +
p2k
m
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!

� Intrinsic (Hamiltonian) guiding-center magnetic-dipole moment

µ
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= � µ bb ⌘ � µ
@B

@B

� Moving electric-dipole (symplectic) contribution

⇡
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⇥
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• Guiding-center Vlasov-Maxwell Equations

� Guiding-center Vlasov equation fµ(X, pk, t)

@fµ
@t

= � d
gc

X

dt
·rfµ �

d
gc

pk
dt

@fµ
@pk

� Divergence form (+ Liouville Theorem): Fµ ⌘ J
gc

fµ

@Fµ
@t

= � r ·
✓

Fµ
d
gc

X

dt

◆

� @

@pk

✓

Fµ
d
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dt

◆

� Source-free guiding-center Maxwell equations

r ·B⇤ = 0 = r ·B and r⇥E+
1

c

@B
@t

= 0 = r⇥E⇤ +
1

c

@B⇤

@t
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� Guiding-center Maxwell equations

r ·E = 4⇡ %
gc

and c r⇥B� @E
@t

= 4⇡
⇣

J
gc

+ c r⇥M
gc

⌘

� Guiding-center charge and current densities (⌃µ ⌘
P

R

dµ)
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, J
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) ⌘ ⌃µ
Z

✓

e, e
d
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X
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◆

Fµ dpk

� Guiding-center magnetization (with moving electric-dipole)

M
gc

⌘ ⌃µ
Z

@⇤
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· Ẋ� e

@�⇤

@B
=

⇣

bb⇥ Ẋ
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Guiding-center Vlasov-Maxwell Variational Principle

• Guiding-center Vlasov-Maxwell Lagrangian density
(Brizard 2000, Brizard & Tronci 2016)

L
gc

=
1

8⇡

⇣

|E|2 � |B|2
⌘

� ⌃µ
Z

FµH dpk dw

� Extended Eulerian fields Fµ and H, with Z = (X, pk;w , t)

H ⌘
⇣

e �⇤ + p2k/2m
⌘

� w = H
gc

� w

Fµ ⌘ Fµ(X, pk, t) �(w � H
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)
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• Eulerian field variations

� Guiding-center Hamiltonian variation

�H ⌘ e ��⇤ = e �� + µbb · �B

� Guiding-center Vlasov variation (Fµ ⌘ Fµ/B⇤
k ):

�Fµ = Jacobian part + canonical part + symplectic part

�Fµ ⌘ Fµ �B
⇤
k + B⇤
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⇣
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�S, Fµ
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c
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• Guiding-center Lagrangian variation

�L
gc

⌘ �⌃µ
Z

B⇤
k �S
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c
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+
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� Guiding-center magnetic H-field: H
gc

⌘ B � 4⇡M
gc

� Guiding-center Noether equation
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Guiding-center Conservation Laws

• Guiding-center energy conservation law

@E
gc

@t
+ r ·S

gc

= 0

� Guiding-center energy density (K
gc

⌘ µB + p2k/2m)

E
gc
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Z

Fµ K
gc
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1

8⇡

⇣
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⌘

� Guiding-center energy-density flux

S
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• Guiding-center momentum conservation law

@P
gc

@t
+ r ·T

gc

= 0

� Guiding-center momentum density

P
gc

⌘ ⌃µ
Z

pk bb Fµ dpk +
E⇥B
4⇡ c

� Symmetric guiding-center stress tensor T
gc

⌘ T
M

+ T
gcV

T
M

⌘
⇣

|E|2 + |B|2
⌘ I
8⇡
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4⇡
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⌘

T
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⌘ P
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+⌃µ
Z

⇣

Ẋ? pk bb + pk bb Ẋ?

⌘

Fµ dpk

� CGL pressure tensor: Ẋ pk bb = (p2k/m)bbbb + Ẋ? pk bb

P
CGL

⌘⌃µ
Z

"

p2k
m

bbbb + µB
⇣

I� bbbb
⌘

#

Fµ dpk

Alain Brizard (Saint Michael’s College) Symplectic gyrokinetic Vlasov-Maxwell theory



Symplectic Gyrokinetic Maxwell-Vlasov Theory

• Perturbed guiding-center dynamics

�
gc

= �0gc + ✏
e

c
A1gc ·

�

dX+ d⇢
gc

�

H
gc

= H0gc + ✏ e �1gc

� Finite-Larmor-radius e↵ects: T�1
gc

x = X+ ⇢
gc

⇣

T�1
gc

�1, T
�1
gc

A1

⌘

⌘ (�1gc, A1gc)

) Electromagnetic perturbations destroy the adiabatic invariance
of the guiding-center gyroaction J: d

gc

J/dt = O(✏)

• Gyrocenter transformation (X, pk, J, ✓,w , t) ! (X, pk, J, ✓,w , t)

�
gy

⌘
⇣e

c
A0 + pk bb0 +⇧

gy

⌘

· dX+ J d✓ � w dt

H
gy

⌘ p2k/2m + J ⌦+ e  
gy

� w ⌘ H
gy

� w
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� Gyrocenter Jacobian

J
gy

=
e

c
b⇤ ·B⇤ =

e

c
B0 + b⇤ ·r⇥

⇣

pk bb0 +⇧
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⌘
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b⇤ ⌘ bb0 + @⇧
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)

� Gyrocenter Jacobian is time-dependent:

@J
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@b⇤
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· e
c
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@t
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Gyrocenter Hamilton Equations

• Gyrocenter Poisson bracket (omit gyrocenter bar unless needed)

{F , G}
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=
@F
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@⇤G
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J
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where the modified space-time operators are
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@t
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J
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• Reduced gyrocenter Hamilton equations

Ẋ =
b⇤

J
gy

⇥
✓

rH
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+
@⇧
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+
eB⇤
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@H
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·
✓
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+
@⇧
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@t

◆

� Gyrocenter gyromotion equations

J̇ = � @H
gy

@✓
⌘ 0 and ✓̇ =

@H
gy

@J
� Ẋ · @⇧gy

@J

� Gyrocenter Liouville Theorem:

@J
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@t
+ r ·

⇣

J
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Ẋ
⌘

+
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⇣

J
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ṗk

⌘
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Gyrocenter near-identity phase-space transformation

• The gyrocenter symplectic one-form and Hamiltonian

�
gy

⌘ T�1
gy

�
gc

+ dS and H
gy

⌘ T�1
gy

H
gc

are derived by a near-identity gyrocenter transformation

Za
= Za + ✏Ga

1 + ✏2
✓

Ga
2 +

1

2
Gb
1
@Ga

1

@Zb

◆

+ · · ·

� The gyrocenter push-forward operator

T�1
gy

⌘ · · · exp(�✏2L2) exp(�✏L1)

where the nth-order Lie derivative Ln is generated by Gn, and the
gauge function S ⌘ ✏ S1 + ✏2S2 + · · · represents the canonical part
of the phase-space transformation.
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• First-order analysis

� First-order symplectic equation

⇧1gy ·
@X
@Zb

=
e

c
A1gc ·

@(X+ ⇢
gc

)

@Zb
� Ga

1 !0ab +
@S1
@Zb

from which we obtain the first-order components

Ga
1 = {S1,Za}0 +

e

c
A1gc ·

�

X+ ⇢
gc

,Za
 

0
� ⇧1gy · {X,Za}0

where { , }0 unperturbed (guiding-center) Poisson bracket.

� First-order Hamiltonian equation

e  1gy = e
⇣

�1gc �
v0
c

·A1gc

⌘

+ ⇧1gy · Ẋ0 � {S1,H0}0

where v0 = (pk/m)bb0 + ⌦ @⇢0/@✓ and Ẋ0 = (pk/m)bb0.
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� Since we want  1gy to be gyroangle-independent, we define

e  1gy ⌘ e
D

�1gc �
v0
c

·A1gc

E

+ ⇧1gy · Ẋ0

where h· · · i denotes gyroangle averaging.

� First-order gauge function S1 (here, hS1i = 0):

{S1,H0}0 ⌘ e
⇣

�1gc �
v0
c

·A1gc

⌘

� e
D

�1gc �
v0
c

·A1gc

E

⌘ e e 1gc

� Gyrocenter gyroaction is independent of the choice of ⇧1gy:

G J
1 =

@S1
@✓

+
e

c
A1?gc

·
@⇢

gc

@✓

� We now introduce a new choice for the gyrocenter symplectic
momentum ⇧1gy based on the first-order gyrocenter
polarization displacement
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Gyrocenter Polarization Displacement

• Calculate the first-order gyrocenter displacement

⇢1gy ⌘ �G1 · d(X+ ⇢0) = {X+ ⇢0, S1}0 + ⇧1gy ⇥
cbb0
eB0

� Gyroangle-averaged first-order gyrocenter displacement

h⇢1gyi =
D

{⇢0, S1}0
E

+ ⇧1gy ⇥
cbb0
eB0

' ebb0
⌦

⇥
"

e

mc
hA1?gc

i+ cbb0
B0

⇥rh 1gci
#

+ ⇧1gy ⇥
cbb0
eB0

where

e h 1gci = e
⇣

h�1gci �
pk
mc

hA1kgci
⌘

+ µ hhB1kgcii
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� Zero gyrocenter polarization displacement h⇢1gyi = 0:
) Gyrocenter symplectic momentum

⇧1gy =
e

c
hA1gci +

pk
B0

hB1?gc

i +
bb0
⌦

⇥
⇣

erh�1gci + µrhhB1kgcii
⌘

� Gyrocenter polarization reappears in the gyrocenter Jacobian

J
gy

= b⇤ · e
c
B⇤

=

✓

bb0 + ✏
hB1?gc

i
B0

◆

·
he

c
B0 +r⇥

⇣

pk bb0 + ✏⇧1gy

⌘i

' J0gc + ✏J0gc r ·
 

⇧1gy ⇥
cbb0
eB0

!

� First-order gyrocenter Hamiltonian

e  1gy = e h�1gci + µ hhB1kgcii
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Symplectic Gyrokinetic Variational Principle

• Symplectic gyrokinetic Vlasov-Maxwell Lagrangian density

L
gy

⌘ �
Z

P
F
gy

H
gy

+
1

8⇡

⇣

|E|2 � |B|2
⌘

where summation over particle species is implicitly assumed and
R

P
denotes a four-momentum integration involving (pk, J, ✓,w).

� Gyrocenter extended Vlasov density F
gy

⌘ J
gy

F

� Gyrocenter extended Hamiltonian

H
gy

=
⇣

p2k/2m + µB0

⌘

+ ✏
⇣

e h�1gci + µ hhB1kgcii
⌘

� w
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• Variation of the gyrokinetic Lagrangian density

�L
gy

= �
Z

P
(�F

gy

H
gy

+ F
gy

�H
gy

) +
1

4⇡

⇣

�E ·E � �B ·B
⌘

� Electromagnetic variations

�E ·E� �B ·B = ✏ �A1 ·
✓

1

c

@E
@t

�r⇥B

◆

+ ✏ ��1 (r ·E)

� @

@t

⇣ ✏

c
�A1 ·E

⌘

�r · (✏ ��1 E+ ✏ �A1⇥B) .

� Variation of extended gyrocenter Vlasov density:

�F
gy

= �J
gy

F + J
gy

�F

= F
✓

@�⇧
gy

@pk
· e
c
B⇤ + b⇤ ·r⇥ �⇧

gy

◆

+ J
gy

⇣

{�S, F}
gy

+ �⇧
gy

· {X, F}
gy

⌘
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� Identity I (integration by parts)

�
Z

P
�(F

gy

H
gy

) = �
Z

P
J
gy

{F , H
gy

}
gy

�S

+

Z

P
F
gy

⇣

�⇧
gy

· Ẋ� e � 
gy

⌘

+
@

@t

✓

Z

P
F
gy

�S
◆

+ r ·
✓

Z

P
Ẋ F

gy

�S
◆

where Ẋ ⌘ {X,H
gy

}
gy

denotes the full gyrocenter velocity.

� Identity II (keep lowest order in B1kgc)

�⇧1gy · Ẋ� e � 1gy = �e h��1gci+
e

c
h�A1gci · Ẋ� µbb0 · hh�B1gcii

+

 

h�E1gci+
pkbb0
mc

⇥ h�B1gci
!

· e
bb0
⌦

⇥ Ẋ
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� Identity III
Z

P
F
gy

⇣

�⇧
gy

· Ẋ� e � 
gy

⌘

⌘ � ✏ ��1 %gy + ✏ �A1 · Jgy/c

+ ✏ �E1 ·Pgy

+ ✏ �B1 ·Mgy

� Gyrocenter charge and current densities

%
gy

⌘
Z

P
F
gy

✓

e
�h�1gci
��1

◆

J
gy

⌘
Z

P
F
gy

✓

�hA1gci
�A1

◆

· e Ẋ

� Gyrocenter polarization and magnetization

P
gy

⌘
Z

P

�⇧1gy

�E1
· Ẋ F

gy

M
gy

⌘
Z

P

✓

�⇧1gy

�B1
· Ẋ � µbb0 ·

@hB1gci
@B1

◆

F
gy
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• Variation of the gyrokinetic Lagrangian density

�L
gy

= �
Z

P
J
gy

{F , H
gy

}
gy

�S

+
✏��1

4⇡

⇣

r ·D
gy

� 4⇡ %
gy

⌘

+
✏�A1

4⇡
·
✓

1

c

@D
gy

@t
� r⇥H

gy

+
4⇡

c
J
gy

◆

+
@

@t

✓

Z

P
F
gy

�S � ✏

4⇡c
�A1 ·Dgy

◆

+ r ·


Z

P
F
gy

Ẋ �S � ✏

4⇡

⇣

��1 Dgy

+ �A1⇥H
gy

⌘

�

� Gyrocenter electromagnetic fields

D
gy

⌘ E + 4⇡ P
gy

H
gy

⌘ B � 4⇡ M
gy
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� Gyrocenter Vlasov equation:
R

J
gy

{F ,H
gy

}
gy

dw = 0 !

@

@t
(J

gy

F ) + r ·
⇣

J
gy

F Ẋ
⌘

+
@

@pk

⇣

J
gy

F ṗk

⌘

= 0

� Gyrokinetic Maxwell equations

r ·D
gy

= 4⇡ %
gy

r⇥H
gy

=
1

c

@D
gy

@t
+

4⇡

c
J
gy

� Gyrokinetic Noether equation

�L
gy

=
@

@t

✓

Z

P
F
gy

�S � ✏

4⇡c
�A1 ·Dgy

◆

+ r ·


Z

P
F
gy

Ẋ �S � ✏

4⇡

⇣

��1 Dgy

+ �A1⇥H
gy

⌘

�

Note: Gyrokinetic polarization and magnetization e↵ects
obtained without 2nd -order gyrocenter Hamiltonian
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Symplectic Gyrokinetic Vlasov-Maxwell Equations

• Gyrokinetic Vlasov equation

0 =
@F

@t
+ Ẋ ·rF + ṗk

@F

@pk

=
1

J
gy



@

@t
(J

gy

F ) +r ·
⇣

J
gy

F Ẋ
⌘

+
@

@pk

⇣

J
gy

F ṗk

⌘

�

� Gyrocenter Hamiltonian

H
gy

= p2k/2m + µ
⇣

B0 + ✏ hhB1kgcii
⌘

+ ✏ e h�1gci

� Gyrocenter symplectic momentum

⇧1gy =
e

c
hA1gci +

pk
B0

hB1?gc

i +
ebb0
⌦

⇥r 1gy
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• Reduced gyrocenter Hamilton equations

Ẋ =
b⇤

J
gy

⇥
✓

rH
gy

+
@⇧

gy

@t

◆

+
eB⇤

cJ
gy

pk
m

ṗk = � eB⇤

cJ
gy

·
✓

rH
gy

+
@⇧

gy

@t

◆

� Gyrocenter symplectic magnetic field

B⇤ = (B0 + ✏ hB1gci) +
c

e
r⇥

 

pk b
⇤ + ✏

ebb0
⌦

⇥r 1gy

!

� Gyrocenter drifts with polarization correction

rH
gy

+
@⇧

gy

@t
' µr

⇣

B0 + ✏ hhB1kgcii
⌘

� ✏ ehE1gci

+ ✏
d0gchE1?gc

i
dt

⇥ ebb0
⌦
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• Gyrokinetic Maxwell equations

r ·E = 4⇡
⇣

%
gy

� r ·P
gy

⌘

r⇥B� 1

c

@E
@t

=
4⇡

c

✓

J
gy

+
@P

gy

@t
+ c r⇥M

gy

◆

� Gyrocenter polarization

P
gy

=

Z

J
gy

F h�3
gc

i ebb0
⌦

⇥ Ẋ ⌘
Z

J
gy

F ⇡
gy

� Gyrocenter magnetization

M
gy

=

Z

J
gy

F

 

⇡
gy

⇥
pkbb0
mc

� µbb0

!

Alain Brizard (Saint Michael’s College) Symplectic gyrokinetic Vlasov-Maxwell theory



Symplectic gyrokinetic Vlasov-Maxwell theory - Talk by Alain Brizard

Lecture notes (Ori S. Katz)

October 11, 2018

Abstract

We consider a general form of electromagnetic gyrokinetic Vlasov-Maxwell theory in which the gyrocenter

symplectic structure contains electric and magnetic perturbations that are necessary to cause the first-order gy-

rocenter polarization displacement to vanish. The gyrocenter Hamilton equations, which are expressed in terms

of a gyrocenter Poisson bracket that contains electromagnetic perturbations and a gyrocenter Hamiltonian, sat-

isfy the Liouville property exactly with a time-dependent gyrocenter Jacobian. The gyrokinetic Vlasov-Maxwell

equations are derived from a variational principle, which also yields exact conservation laws through the Noether

method. We show that the new symplectic gyrokinetic Vlasov-Maxwell equations retain all first-order polar-

ization and magnetization effects without the need to consider second-order contributions in the gyrocenter

Hamiltonian.

1 Lecture notes

Outline:
Vlasov-Maxwell equations. Specifically - variational principles for exact and reduced, by guiding center and

gyrocenter, VM equations.
Lagrangian - not canonical transformations, so the Poisson brackets change.
Hamiltonian - transforming from the Lagrange bracket to the Poisson bracket. This procedure guarantees that

the Poisson bracket will satisfy all the properties, specifically the Jacobi equality. From Hamilton’s equations we
get the Liouville theorem - Jacobian is 1.

Vlasov equation - characteristics are simple Hamilton’s equations. It states that the distribution is a slaved
function - whatever you do to the trajectory, the Vlasov distribution follows.

Vlasov equation in extended phase space - multiply physical Vlasov equation to a delta function.
We’re going to recover the extended phase space version by variational principle.
Maxwell equation - divided into two groups - with and without particle sources.
Vlasov Maxwell equations- Brizard (2000) - Several versions exist. I present one derived in 2000 that exploits

extended phase space version. EM Lagrangian |E|2 − |B|2 minus the integral over the momentum part.
Calculating the Eulerian variation, only the electric potential is varies, not the kinetic energy which is a function

of the dummy variable.
The constrained variation has two parts - canonical and symplectic. The variation δA appears in the symplectic

part.
The electric and magnetic field are not varied independently.
Rearranging terms, we obtain 4 terms, with δS, δφ and δA. By rearranging the terms, we obtain an explicit

time derivative, resulting in a Noether equation allowing a calculation of conserved quantities.
After the variational principle, the variation in the Lagrangian equals an explicit time derivative pluse space

derivaticve.
Thus we obtain momentum-energy conservation, relating to space-time symmetry. There is also a gauge variation

term, important because the δS is not gauge invariant.
The varition of the Lagrangian - we can impose that

´

FH = 0 and the only variation left is the Maxwell one.
Comparing variations to zero, obtain the energy-momentum conservation laws, with the Vlasov-Maxwell energy

density, energy density flux, momentum density and stress tensor.
So the variational principle is used to show that the Vlasov-Maxwell equations are subject to the variational

method, and have explicit conserved quantities.
Guiding-center Lagrangian one-form - gyromotion has been transformed - J is the gyro action. wdt is the

extended moment. Littlejohn - higher order contributions to the bracket.
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Guiding center extended phase space Poisson bracket.
Here, A,B are functions of time.
Deriving the reduced guiding center EOM, E∗ can be written analogously to an electric field, with φ∗ and A

∗

instead.
Guiding center Jacobian - non-canonical transformation so the Jacobian is no longer 1, it is an explicit function

of time as it depends on B. This is in constrast to the standard guiding center case.
When moving to reduced picture, the rapid fluctuations shift from the Vlasov equations to the Maxwell equations.
Guiding center electric dipole moment - first order in magnetic field non-uniformity. Two contributions to

magnetization - intrinsic (Hamiltonian), related to the derivative of the Hamiltonian w.r.t. B; and a symplectic
contribution, taking into account only the perpendicular component of the guiding center velocity.

Guiding center Vlasov-Maxwell equations empoys the guiding center Vlasov equation as characteristics. Can
be written either in standard or divergence form, using the Liouville theorem. Source-free guiding center Maxwell
equations remains with starred fields.

Remaining guiding center Maxwell equations - current is the moment of the guiding center velocity. There is no
guiding-center polarization here. However, the guiding center polarization enters into the symplectic part.

Guiding-center magnetization - two contributions.

Now, a variational form of these equations.
Fµ and H are the extended fields.
Varying the Hamiltonian, we have an additional term - the Hamiltonian contribution to magnetization. The

varied field δFµ will have three contributions, Jacobian, canonical and symplectic parts. Note that the δA∗ has a
part with δA and a part with δB.

Eventually, obtain the guiding center Lagrangian variation, with a magnetic field and a Noether equation.
If there was magnetization, E would be replaced with a D.
Thus we obtain the guiding center conservation laws. Poynting flux now has E ×H .
The derived guiding center momentum density has only the parallel momentum, and E ×B.
The guiding center stress term has two contibutions, the Maxell and the guiding center Vlasov. They are

symmetric.
In red - the guiding center magnetization from all contributions. If we wouldn’t take all contributions into

account the angular momentum would not be conserved and the tensor would not be symmetric.

Symplectic Gyrokinetic Maxwell-Vlasov equations:
Guiding center dynamics are perturbed by a magnetic field. Gyro radius - ρgc.
Thus the electromagnetic perturbations destroy the adiabatic invariance of the guiding center gyroaction.
Using new coordinates, the new structure have a contribution from the gyro perturbation. We have complete

freedom in choosing what goes into the perturbations, and how much go into the symplectic vs. the Hamiltonian
parts.

Gyrocenter Jacobian - dot product of parallel unit vector that is no longer parallel, with B∗.
The gyrocenter Jacobian is time dependent.
Since the gyrocenter momentum is time dependent, there are corrections to the coordinate and parallel momen-

tum time derivatives. Liouville theorem is satisfied.
How to derive these new gyrocenter phase space coordinates?
Lie transform perturbation techniques, generated by the gyrocenter and the gauge function one form. The choice

of S will not change the nature of the Poisson bracket, but it will appear in the definition of the Hamiltonian.
Generally, in order to obtain a first order Hamiltonian, we need to derive the second order Hamiltonian as well.

Here the second order Hamiltonian is not needed.
First order analysis allows us to find the first-order Hamiltonian equation.
We choose S1 to be gyroangle-independent, resulting in ψ1gy to be gyroangle-independent. S1 only depends on

the gyroangle-independent part of the Hamiltonian.
While there are many representations, they all treat the gyroaction as a unique quantity, as the physics dictate.

Indeed, the theory is quite explicit - gyroation does not depend on the choice made for the gyrocenter symplectic
momentum ψ.

Gyrocenter polarization displacement - pushing forward the particle position into gyrocenter phase space -
obtain two contributions, one due to S1 and one due to Π1gy . When calculating the gyrocenter average, obtain
contributions from gyrocenter momentum, perpendicular complnent of A and the gradient of the average of ψ1gc.
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You could choose the gyrocenter polarization displacement to be zero, by choosing Π1gy as written. We will see
the impact this has on the equations.

We use this specific choice of the gyrocenter symplectic momentum Π1gy. The physics of course do not change,
just get shuffled somewhere else.

Thus the derived first order gyrocenter Hamiltonian has a very natural simple relationship.
Now, we will derive these equations from the variational principle. The Lagrangian density has the same form.

Variational principle is derived by performing the variation. The variation of the extended gyrocenter Vlasov density
again has three components.

Rearranging the variations, we can write the interactive portion in terms of functional derivatives. The magne-
tization M has an intrinsic and an electric dipole contribution.

Obtain - Gyrocenter Vlasov equation, gyrokinetic Maxwell equations and gyrokinetic Noether equation. This is
derived straight from the variational principle without going through the calculation of the second order gyrocenter
Hamiltonian.

Polarization charge density - Pgy.

2 Questions

- This is important because leads to computational simplifications, are your final results used in gyrokinetic codes?
Gyrokinetic codes are used to simulate plasma systems. Reduced systems are useful for computational rea-

sons. Very few computational codes took into account the second order gyrocenter Hamiltonian. This symplectic
representation might provide an equally powerful set of equations without deriving the higher order effects.

- What is the principle by which the constraint variations of F and B were derived?
For the electro-magnetic fields, use that Gauss’s law and Vlasov laws are conserved. For F , the phase space

integral of δF must be zero.
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