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Why multiphysics?

• In complex physical systems, various phenomena emerge at di↵erent
scales (in both time and length)

• in many cases, essentially di↵erent physical phenomena are involved
at each scale, thereby requiring a di↵erent physical description

• Examples:

– Liquid crystals: macroscopic fluid-like equations are coupled to the
rotational motion governing microscopic rod-like molecules

– Magnetized plasmas: often described by coupling fluid-like eqns
for the plasma bulk to suitable kinetic theories for energetic particles

– Molecular dynamics: heavy nuclei essentially obey classical dy-
namics, while electrons require a full quantum treatment



Two challenges in multi-physics modeling

• Kinetic-fluid models for magnetized plasmas

– Fluid & kinetic models for plasmas

– New hybrid plasma models

• Coupled classical-quantum dynamics

– Koopman wavefunctions for classical mechanics

– Hybrid classical-quantum wave equation

We shall exploit mometum map structures from symplectic geometry!
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Geometric hybrid models

for magnetized plasmas



Kinetic and fluid models in continuum dynamics

• Fluid models arise from kinetic equations by an averaging process

• This averaging process is known in statistics as ‘the moment method’

!"#$%&'(%)"*&
&
)+,-./&&
&

!"#$"%&'(')*$$('%*$"'(

!tu+ u "#( )u = $#p, #"u = 0

0$1)2$3&24)(56&(1&748*)&*783)&
&
&9,:;<=/&&
&
+,%-./'%*$"'(#.0"-1(#$.2*$(341*),%'(

!t f + v "!x f #$%"!v f = 0
+.)"1&'(

vn! f dv

• Fluid closure models generally require low particle energy/temperature



Hybrid kinetic-fluid models for plasma physics

• Plasma simulations are mostly based on fluid (MHD) models

• These are invalidated by the presence of energetic particles

• Then, small-scale processes may control large-scale phenomenology

Energetic Solar wind interacts with Earth’s magnetosphere



• Microscopic e↵ects need to be considered along with fluid macro-scales

• Hybrid philosophy: a fluid interacts with a hot particle gas

Multi-physics approach!

! MHD fluid models need to be coupled to kinetic-like equations

• Several coupling options are available, which need special care

• These usually arise by inserting assumptions in the equations of mo-
tion, cf [Park et al. (1992); Kim et al. (1994); Todo et al. (1995)]

The consistency of hybrid models has been a 20-year open question

ciao . . . we shall address this problem by using momentum maps!



Plasma models

• Particle trajectories on phase space (Liouville):

traces particles (x(t),p(t)) ! solves all details.

• Kinetic approach (Vlasov, Boltzmann):

probability distribution f(x,p, t) ! retains most details.

• Fluid approach (MHD, Hall-MHD):

local averages (momentum m(x, t), density ⇢(x, t)) ! forget details.



From particle motion to kinetic theory

• Particle simulations for (xs,ps) solve all details, but at huge costs.

• Kinetic theory: spread particles across phase-space ! probability

• Averaging processes (BBGKY) lead to the particle distribution f(x,p).

• A kinetic equation is an evolution equation for f(x,p).

• Collisional ! Boltzmann (H-theorem)

• Collisionless ! Vlasov (mean field model)

@tf + {f, H} = 0



Kinetic approaches are expensive!

Better forget details? Fluid approaches are very convenient!



Magnetohydrodynamics (MHD)

• Fluid plasma model in which the magnetic field B is ‘frozen in’:

@t(B ·dS)+£
u

(B ·dS) = 0 , or, equivalently, @tB+r⇥ (B⇥u) = 0

Here, B · dS is a di↵erential 2-form and £
u

denotes Lie derivative.

• Fluid equation is [Alfvén (1942)]

@u

@t
+ (u ·r)u = �1

⇢
rp� 1

µ0⇢
B⇥r⇥B

where ⇢ is the transported mass density and p denotes pressure

• This is a Lie-Poisson Hamiltonian model! [Morrison&Greene(’80)]



Still, energetic particles require kinetic theory!

Hybrid Kinetic MHD
Lorentz particle traces in FRC

Conclusions
Giant Sawtooth

Preliminary comments on FRC’s
the equilibrium FRC
3 categories of particles
surprising observations

Low energy particles exhibit drifting cyclotron motion

� gyromotion and drift motion (from �B drift) are apparent

� particles are colored with v�

� orbits are probably volume filling but on a very long time scale

Charlson C. Kim, PSI-Center Hybrid Kinetic MHD

Hybrid Kinetic MHD
Lorentz particle traces in FRC

Conclusions
Giant Sawtooth

Preliminary comments on FRC’s
the equilibrium FRC
3 categories of particles
surprising observations

Highest energy particle orbit entirely outboard

� orbit characterized by n = 0, 1

� n = 0 axisymmetric orbit, shelll has no width

� n = 1 o�set orbit, shell of small but finite width

� commensurate (wrt vz) and non-commensurate orbits exist

� highest energy particles confined to outboard midplane!

Charlson C. Kim, PSI-Center Hybrid Kinetic MHD

Hot particle dynamics in (Pressure-Coupling) hybrid simulations (NIMROD code) for
Field Reversed Configuration experiments (FRCs). Right: low energy particles colored
by poloidal velocity. Left: high energy particles colored by axial velocity. Hot particles
confine to the outboard region (higher magnetic gradients) and never cross the origin.
(Figure by the Plasma Science and Innovation Center, University of Washington).



Kinetic theory & electromagnetism: Maxwell-Vlasov

• Vlasov kinetic equation for f(x,p, t). . .
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• This is also a Lie-Poisson system! [Morrison(’80), Marsden&Weinstein(’82)]



Geometric continuum dynamics

Lagrangian and Eulerian variables are related by the relabeling symmetry,

which produces an intrinsic geometric description [Arnold (1966)] captur-

ing essential features such as circulation laws and dynamical invariants.

Ex. Incompressible ideal fluids move along geodesics on G = Di↵vol(M)

Geometric approach based on variational and Hamiltonian formulations!



Lagrangian fluid dynamics of ⌘(a, t) on the Lie group G possesses the

canonical Poisson bracket: {F, G} =
Z
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Eulerian dynamics on the (dual) tangent space at identity possesses the

Lie-Poisson bracket (symmetry) : {F, G}(�) =
⌧
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Fluids: (⌘, ) are Lagrangian coordinates, while � = fluid momentum m.

Vlasov: (⌘, ) are Lagrangian coordinates, while � = distribution function f.

Lie-Poisson reduction: � = �(⌘, ) is a momentum map



Momentum maps are everywhere in mechanics

• Rotational symmetry for vectors (rigid body motion):

[g,k] = g ⇥ k ! {F, G} = µ · dF

dµ
⇥ dG

dµ

• Relabeling symmetry for velocities (Euler fluid dynamics):

[v,u] = (v ·r)u� (u ·r)v ! {F, G} =
Z

µ(x) ·

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,
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�

d3
x

• Unitary symmetry for matrix operators (quantum dynamics):

[A, B] = AB � BA ! {F, G} = ~Tr
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• Canonical symmetry for phase-space functions (Vlasov equation):
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Let’s apply geometric mechanics

to formulate hybrid models!

! MHD fluid models need to be coupled to Vlasov-like equations



A geometric hybrid model: assumptions

• Consider a plasma of a fluid (MHD) bulk and an energetic component

• Express the dynamics in terms of the total momentum M = m + K,
where m = ⇢u and K =

R

pf d3
p. Then one wants to assume a rar-

efied energetic component so that K-contributions can be neglected.

• In plasma literature, one replaces @tK ' 0 in the equation for the total
momentum M. This breaks Hamiltonian structure: no energy balance!

• The geometric Hamiltonian approach neglects K-contributions by re-
placing m ' M in the Hamiltonian, which is then given by [T(2010)]
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A geometric hybrid model: equations

• This process returns the same fluid equation as in the literature while

inserting new transport term and inertial forces [T. (2010)]
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• Inertial forces – particles now move in the (Lagrangian) fluid frame.

• Dropping u in 2nd eqn yields the non-Hamiltonian model [Park&al(’92)]

• Helicity invariants [Holm, T. (2012); T, Tassi & Morrison (2015)]:
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Static equilibria – magnetized Landau damping

Linearize around static �equilibria with f0 = f0(p
2/2) and define F =

R

f0 d2
p?. For longitudinal propagation, one obtains (with vA = b/

p
µ0)
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New model (↵ = 1) gives magnetized kinetic damping

Spurious instability in the non-Hamiltonian model! (↵ = 0)

[T, Tassi, Camporeale & Morrison (2014)]



Where’s the geometry? Semidirect products!

• The momentum shift M = ⇢u + K corresponds to a Poisson di↵eo-

morphism [Krishnaprasad & Marsden (1984)]

E :
⇣

X(R3) � XHam(R6)
⌘⇤ !

⇣

X(R3)sXHam(R6)
⌘⇤

(⇢u,K) 7! (⇢u + K,K)

• Denote two-forms by ⌦2(R3). Hybrid model is Lie-Poisson on the Lie group
⇣

Di↵(R3)sDi↵Ham(R6)
⌘

| {z }

cold & hot flows (Lagrangian paths)

s
⇣

C1(R3) ⇥ ⌦2(R3)
⌘

| {z }

dual to advected quantities: (⇢,A)
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• Semidirect-product arises from cotangent-lifts of Di↵Ham(R3) acting

on Di↵(R6) (subgroup action), whose equivariant momentum map is

f(x,p) 7!
Z

p f(x,p) d3
p = K(x)
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• We confused Di↵Ham(R3) with its extension Di↵Ham(R3)⇥R (see later)



Guiding-center (GC) motion: analogy with liquid crystals

• In liquid crystals, rod-like molecules move carrying an orientation, i.e.

a rotational field R(x, t) 2 SO(3) [Gay-Balmaz, Ratiu & T (’13)]

• Locally, molecules align along a certain direction called director field

n(x, t) = R(x, t)n0(x) , @in(x, t) = ��i(x, t) ⇥ n(x, t)

where � = �a
i (x, t) dxi

ea is a rotational strain (topological defects).

• Littlejohn’s GC theory (to 1st order) has a similar formulation [T (’16)]:

⇢(x, t) = ⇢(t)R(x, t)a0(x) , R(x, t) = e�⇥(t)bb(x,t)/"

where bbjk = �✏jklbl identifies the magnetic field direction b = B/B.



Guiding-center hybrid-MHD

Alex Close’s PhD thesis:
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where X (x, vk) = (u(x, vk), ak(x, vk)) and P(x, t) are given by
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‘usual’ CGL pressure tensor

�

dµ dvk

• When U = 0, P reduces to the newly found GC stress tensor [Brizard&T(’16)]

• Variational formulation contains a lot of geometry! [Close, Burby & T (’18)]



First message:

to derive reduced models, it’s better (if possible) to insert the approxi-

mations in the Hamiltonian/Lagrangian than in the eqns of motion!



Phys.	Today	(1991)	

Geometric	approach	to	
hybrid	classical-quantum	systems	



The search for classical-quantum coupling

Since the raise of quantum mechanics, classical-quantum coupling has

emerged as an outstanding question in

• Quantum measurement theory: when a quantum state is measured,

it undergoes an interaction with a classical apparatus

• Chemical physics: necessity of approximating the nuclei as classical

objects interacting with an electron ensemble

After about a century of continuing e↵orts, what do we know?

• When a quantum state interacts with a classical system, the latter

undergoes an uncontrollable disturbance. (cf. N. Bohr)

• When a quantum state interacts with a classical system, the former

undergoes decoherence (lack of pure state solutions).

NOT MUCH! – Let’s revise both quantum and classical mechanics. . .



Quantum & classical states [Cherno↵ & Marsden (1976)]

• Quantum pure states: normalized L2�functions (ie.
R | (x)|2 dx = 1)

Schrödinger’s equation: i~ @t = Ĥ 

• Quantum mixed states are positive-definite operators ⇢̂ with Tr ⇢̂ = 1:

von Neumann equation: i~ @t⇢̂ = [Ĥ, ⇢̂] ,

where [·, ·] is the commutator. (Setting ⇢̂ =   † yields pure states).

• Classical pure (particle) states are points in phase-space

Hamilton’s equations for (q, p): q̇ =
@H

@p
, ṗ = �@H

@q

• Classical mixed states: positive-definite densities with
R

⇢(q, p) dqdp = 1:

Liouville (Vlasov) equation: @t⇢ = {H, ⇢}
where {f, g} = @qf@pg � @pf@qg is the canonical Poisson bracket.

(Setting ⇢(q, p, t) = �(q� q(t))�(p� p(t)) yields pure states).



Objective:

Hamiltonian model for interacting classical and quantum particles.

Ideally, we want to construct a hybrid density

⇢̂⌦ ⇢(q, p) �! ⇢̂(q, p)

More di�cult than kinetic-fluid, where particles and fluid evolve separately.



Two possible strategies for Hamiltonian hybrids

1. Write quantum states in terms of (Liouville-like) probability densities

• The Wigner-Moyal formalism  (x) 7! W (x, p) provides a de-

scription of quantum mechanics in terms of phase-space densities

• Approach widely studied. Its Hamiltonian setting is noncanonical

[Bialynicki-Birula & Morrison (’91)], thus leading to complications

2. Write classical mechanics in terms of (Schrödinger-like) wavefunctions

• Following Koopman’s work, this was proposed in [Sudarshan (1976)]

• This approach seems promising because wavefunctions have a sim-

ple (canonical) Hamiltonian setting ! important simplification

. . . Second method leads to interpretative problems – can we solve those?



The Koopman-von Neumann equation

Question: can we define an L2�function  (q, p) such that the probabil-

ity density ⇢ = | |2 satisfies the classical Liouville equation @t⇢ = {H, ⇢}?

Theorem (adapted from [Koopman, 1931]). Let H(q, p) be a

phase-space function and let  2 L2(R2) satisfy the

KvN equation i~ @t = {i~H, }
Then ⇢ = | |2 satisfies @t⇢ = {H, ⇢}. (See also [von Neumann (1932)]).

The Hermitian (self-adjoint) operator L̂H := {i~H, } is called the Liouvillian

i~ @t = L̂H 

Sudarshan extended KvN to include the interaction with quantum de-

grees of freedom: hybrid wavefunction  (q, p) ⌦  (x) ! ⌥(q, p, x).

However, by invoking superselection rules for physical consistency, Sudar-

shan’s (Hamiltonian!) theory leads to fundamental interpretative issues.



Hamiltonian structure of the KvN equation

The KvN eqn. possesses the standard (canonical) variational principle (VP):

�
Z t2

t1

Z

✓

~Re(i ⇤@t ) � ⇤L̂H 
◆

dqdp dt = 0 ,

Remarks:

• Conserved energy:
R

 ⇤L̂H dqdp = ~
R

H Im{ , ⇤} dqdp = const .

This is di↵erent from the physical energy
R

⇢H dqdp =
R | |2H dqdp

(which is also conserved). Interpretative issue of the KvN formula ⇢ = | |2

• L̂H is not unique: the correspondence H 7! {i~H, } is many-to-one

• More fundamental issue: the integrand in the VP does not transform

consistently under gauge transformations  (q, p) 7! eiS(q,p) (q, p)

Classical gauge covariance (equivariance) is violated

Claim: the Koopman-von Neumann theory is incomplete.



Canonical transformations and their central extension

• Group theory: L̂H := {i~H, } generates canonical transformations

(q, p) 7!
⇣

Q(q, p), P (q, p)
⌘

, (Q, P ) 2 Di↵Ham(R2)

• In classical mechanics, one says that the Hamiltonian function H

generates the dynamics (Hamiltonian flow) by Hamilton’s equations.

• However, Hamiltonians are only defined up to constants: H and
H 0 = H +  generate the same dynamics!

• Van Hove (1951): don’t look at Di↵Ham(R2), but rather look at the
central extension Di↵Ham(R2) ⇥ R (strict contact transformations)

Product rule: (⌘1,1)(⌘2,2) =

 

⌘1�⌘2, 1+2+
Z ⌘2(0)

0

(⌘⇤1A�A)

!

Here, � denotes composition, ⇤ denotes pullback, and A = (qdp � pdq)/2.

! The Lie algebra coincides with the Poisson algebra (C1(R2), {·, ·})



Modifying the Louvillian: prequantum operator

Theorem [Van Hove, 1951]. Strict contactomorphisms carry the fol-

lowing (right) unitary representation on L2(R2) (denote z = (q, p)):

 (z) 7! ei~�1(+
R

z

0

(⌘⇤A�A)) (⌘⇤ ) ,

whose infinitesimal generator is given by i~�1L̂H , where

L̂H = L̂H �
✓

1

2
z ·r

z

H � H
| {z }

Lagrangian!

◆

. (H 7! L̂H is one-to-one: uniqueness!)

There’s a whole lot of geometry here! In geometric quantization (pre-

quantization), the modified Liouvillian L̂H is called prequantum operator:

Lie algebra structure: [L̂H, L̂K] = i~L̂{H,K}

Given a function A(z), the map A(z) ! i~�1
bLA is a Lie Algebra isomorphism



Modifying the Koopman-von Neumann theory

Now, we perform the replacement L̂H ! L̂H in KvN theory:

• KvN equation becomes i~ @t = L̂H (notice: ~ no longer cancels!)

• The KvN variational principle becomes gauge-covariant (equivariant):

�
Z t2

t1

Z

✓

~Re(i ⇤@t ) � ⇤L̂H 
◆

d2z dt = 0 ,

• Conserved energy:
R

 ⇤L̂H d2z =
R

H
⇣

| |2 + divJ
⌘

d2z with

J =
1

2
z| |2 + i~ ⇤Jr , with J =

 

0 1
�1 0

!

! What’s the meaning of the quantity | |2 + divJ ?



The quantity | |2 + divJ

Answer [Gay-Balmaz, T (2018)]: The map

J :  7! | |2 + divJ
is a MOMENTUM MAP for the action of strict contacto’s on L2(R2),

that is it satisfies

hA|J( )i =
1

2
⌦( , i~�1L̂A ) , 8A 2 C1(R2) ,

where h·|·i is the L2�inner product and ⌦( 1, 2) = 2~ Imh 1| 2i.

• Setting ⇢ = | |2 +divJ returns the Liouville equation @t⇢ = {H, ⇢}
The sign of ⇢ is preserved in time: positivity is preserved!

• Notice:
R

divJ d2z = 0 �! J doesn’t contribute to total probability!

The quantity | |2+divJ is a representation of the classical probability density!



Recap: Koopman–Van Hove classical mechanics

Bernard Osgood Koopman Bernard Osgood Koopman

Combining KvN theory with Van Hove’s central extension yields the fol-

lowing (Clebsch) representation of the Liouville probability density:

⇢ = | |2 + ~ Im{ ⇤, } +
1

2
div
⇣

z| |2
⌘

Koopman-van Hove equation (KvH) for the classical wavefunction:

i~@ 
@t

= {i~H, }�
✓

1

2
z ·rH � H

◆

 



Let’s exploit Shudarshan’s idea for classical-quantum hybrids!

In 1976, George Sudarshan (Sep 1931 – May 2018) first proposed the idea

of using classical (KvN) wavefunctions for classical-quantum coupling.

However, as we showed, KvN alone is incomplete. Use Koopman–Van Hove!
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Construction of

classical-quantum hybrids



Towards hybrid theories: the quantization process

• There is a well-known procedure taking the Koopman–van Hove equa-

tion i~ @t = L̂H into the Schrödinger equation i~ @t = Ĥ (with

Ĥ = T̂ + V̂ , kinetic + potential).

• Upon avoiding technicalities, one sets

@p = 0 , p = �i~@q 

to obtain i~ @t (q) = [(�i~@q)2 + V (q)] (q).

• In short:  (q, p) �!  (q)

• Although this (formal) process is well-known in geometric quantiza-

tion, it is pretty unknown within the physics community

Caution: here we focus on the case H = T + V .

However, di↵erent methods lead to the same result (not covered here)



Strategy: partial quantization procedure

Write the KvH equation for 2 classical particles and quantize only one!

⌥(q, p, x,�) �! ⌥(q, p, x)



The hybrid wave equation

The partial quantization procedure yields the hybrid wavfunction equation

i~@⌥
@t

= {i~cH,⌥}�
✓

1

2
z ·r

z

cH � cH
◆

⌥ =: bL
bH
⌥ ,

where z = (q, p) and cH = cH(z) is an operator-valued function on phase-space

Equations of the same type were found by Boucher & Traschen in 1988!

However, these equations were rejected since

• they were claimed by the authors to yield “interpretative di�culties”

• Also, B&T claimed the absence of a positive conserved energy

On the other hand, by construction the same equation arises from the VP
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✓

~Re(i⌥⇤@t⌥) �⌥⇤
bL
bH
⌥
◆

d2z dx dt = 0 ,

! The sign of the conserved energy
R

⌥⇤
bL
bH
⌥ d2z dx is preserved in time!



Hybrid probability density

In both classical and quantum mechanics, there exists a density (function

⇢(q, p) or operator ⇢̂) such that the total energy is formally written as

h⇢|Hi .

The energy is linear in ⇢ and H. (Here, h·|·i denotes the natural inner product).

Question: Can we define a density-like object bD such that
Z

⌥⇤
bL
bH
⌥ d2z dx = h bD|cHi ?

Answer: Yes! We have
R

⌥⇤
bL
bH
⌥ d2z dx = Tr

R

bD(z) cH(z) d2z, where

bD(z) := ⌥(z)⌥†(z) + i~{⌥(z),⌥†(z)} +
1

2
div
⇣

z⌥(z)⌥†(z)
⌘



More on probability densities: quantum and classical

Question: Fine – we have a hybrid density bD(z), but how do we recon-

struct the quantum density operator ⇢̂ and the classical density ⇢(q, p)?

Answer: We simply project bD(z) on the quantum density operators and

on the classical density functions, respectively:

⇢̂ =
Z

bD(z) d2z , ⇢(q, p) = Tr bD(z)

• Quantum density operator: ⇢̂ =
Z

⌥(z)⌥†(z) d2z ! POSITIVE!

!Only available hybrid theory capturing positivity of the quantum density!

• Classical density: ⇢(q, p) = |⌥(z)|2 � i~{⌥(z)†,⌥(z)}+ 1
2 div(z|⌥(z)|2

⌘

! Lack of classical positivity in hybrid systems was explained by Boucher (1988)



Dynamics of the hybrid probability density

In 1981, Aleksandrov and Gerasimenko independently proposed an equa-

tion for the hybrid density bD(z): the quantum-classical Liouville equation

@ bD
@t

= �i~�1[cH, bD] +
1

2

⇣

{cH, bD}� { bD, cH}
⌘

.

Question: We know this is not Hamiltonian, but what’s the bD�equation

resulting from our Hamiltonian construction?

Preliminary question: What do we really know about bD?

• The map ⌥⌥† 7! bD is the dual of bA(z) 7! bL
bA

(no LA isomorphism!)

• Unfortunately, bD does not enjoy momentum map properties

�! There is no closed equation for bD in the general case!

Answer: An explicit calculation yields surprising similarities!

@ bD
@t

= �i~�1[cH, bD] +
⇣

{cH, bD}� { bD, cH}
⌘

+ F (⌥,r⌥)

F is a nasty function: no closed eqn (consistent with Salcedo (1999))



Interpretation of the theory: decoherence

From the previous equation for bD (or for ⌥), we obtain the dynamics for the

quantum and classical probabilities ⇢̂ =
R

bD(z) d2z and ⇢(q, p) = Tr bD(z):

i~ @⇢̂
@t

=
Z

[cH, bD] d2z ,
@⇢

@t
= Tr{cH, bD}

OK – these are pretty good looking formulas, but what do they mean?

• Pure quantum state solutions ⇢̂ =   † are no longer preserved in time

! Absence of pure quantum states ! Quantum decoherence!

• Particle-like solutions ⇢(z, t) = �(z� ⇣(t)) are also lost

! Absence of pure classical states ! ‘Classical decoherence’ !

• Generally, sgn(⇢) 6= const: this is explained by using Wigner functions



Second message:

If you have a Hamiltonian theory (e.g. KvN or KvH), look for momentum

maps – they will tell you what to do!



CIAO

CIAO

CIAO

That’s all – thanks!



Mean-field ansatz: recovering previous theories

Question:
How do we compare with previous theories (mathematically consistent)?

Let us adopt the mean-field ansatz (no classical-quantum correlations):

⌥(z, x, t) =  (z, t) (x, t) ! bD(z, t) = f(z, t) ⇢̂(t)

with ⇢̂ =   † and f = | |2 + ~ Im{ ⇤, } + div(z| |2)/2.

Answer: this yields exactly the mean-field model from chemical physics!

i~ @⇢̂
@t

=


Z

fcH d2z , ⇢̂
�

,
@f

@t
=
n

Tr(⇢̂cH) , f
o

• The second equation has single-particle solutions f(z, t) = �(z�⇣(t))
! Pure states are recovered in the absence of classical-quantum correlations!

• Notice that sgn(f) = const.

! Positivity is recovered in the absence of classical-quantum correlations!
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Abstract

Many physical situations involve the interplay of different phenomena at different scales. The corresponding

description requires the use of multi-physics models, whose mathematical formulation poses several challenges.

Examples are found in the classical-quantum coupling in molecular dynamics or in the coupling between mean

flow and fluctuation kinetics in turbulence. In plasma physics, the interaction of energetic particles (obeying

kinetic theory) with a fluid bulk (obeying magnetohydrodynamics) requires formulating hybrid kinetic-fluid

models, which are often obtained by making assumptions that destroy the correct energy balance. This talk

shows how momentum-map techniques in geometric mechanics provide a powerful unifying framework for both

kinetic-fluid and classical-quantum coupling, thereby leading to new hybrid models in different contexts.

1 Lecture notes

What can you do with a momentum map?
For symplectic maps, the momentum map is known, mostly as a generalization of Noether theorem concerning

conserved quantities. We will talk here about momentum maps in the case of non-conserved quantities.
The moment method - starting with kinetic theory on phase space and looking at the moment equations, obtain

Euler fluid dynamics equations.
Express particle motion in new frame, obtain a new transport term and inertial forces.
Static equilibria - obtain a new dispersion relation with ↵. Then, we plotted the growth rate for the old hybrid

model and the new hybrid growth rate. In the old hybrid model, we get an instability, but there is no source of
energy for this, and the only reason for this spurious instability is because the system does not conserve energy.
This convinced us that the new hybrid model is fundamentally different.

Where’s the geometry? This momentum shift is a momentum map, corresponding to a Poisson diffeomorphism.
The resulting semidirect product arises naturally. There is a momentum map underlying this - the K (x), exactly
the term we want to neglect.

Guiding center (GC) motion: analogy with liquid crystals. In liquid crystals, rod-like particles are transported
in space, so a rotational field needs to be taken into account as well as a velocity field. It turns out that to the first
order, there is an analogy between liquid crystals and guiding center. The director field description of liquid crystals
applies to first order Littlejohn’s GC theory. The analogy, in a way, is between the physical molecule dragged in
space and the particle orientation dragged in space.

GC hybrid-MHD - would like to develop hybrid models in which the energetic particles are approximated by the
GC description. Can one build a GC hybrid theory? Yes, but since there is no natural action of the diffeomorphism
on the configuration space it is not easy. Need to go to higher dimensions, build the theory there, then project to
the 4 dimensional configuration space.

Equations for � and P: contain the usual pressure tensor and new stress terms. This model was derived by
variational methods.

Applying this technique to chemical physics: related to the search for classical-quantum interactions. How to
write a hybrid quantum-classical theory? Using the von-Neumann approach to write classical Hamiltonian theory
in quantum language by looking at averages (analogous to mixed states in QM) instead of particles (analogous to
pure states in QM).
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Argument in favor of non-positive classical densities

In QM, di↵erent ‘pictures’ are available: Schrödinger, Heisenberg, Dirac,. . .

The phase-space picture goes back to Wigner (1932) and Moyal (1949)

Wigner transform (LA isomorphism):
⇣

⇢̂, [·, ·]
⌘

7!
⇣

W⇢ , {{·, ·}}
⌘

W⇢ (q, p) is a phase-space function satisfying the Wigner-Moyal equation

@W⇢

@t
= {{H, W⇢ }}
| {z }

Moyal bracket

({{·, ·}} deforms {·, ·})

• Property 1: W⇢ is not positive definite

• Property 2: {{A, B}} = {A, B} if A or B is a quadratic function

Consider a harmonic oscillator (coord z) coupled to a nonlinear system (co-

ord ⇣): H(z, ⇣) quadratic in z. WM eqn: @tW⇢ = {H, W⇢ }z + {{H, W⇢ }}
⇣

@WHO

@t
=
Z

{H, W⇢ }z d2⇣ ,
@WNL

@t
=
Z

{{H, W⇢ }}
⇣

d2z

! While WHO is essentially classical, it may become negative because so may W⇢ !
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