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Geometric multiphysics models for hybrid
kinetic-fluid and classical-quantum systems

Cesare Tronci
University of Surrey, Guildford, UK
Collaborators:

A. Brizard (St Michael’s), D. Bondar (Tulane), J. Burby (Courant), E. Camporeale (Amsterdam),
A. Close (Surrey), F. Gay-Balmaz (Paris), P. Morrison (Austin), E. Tassi (Nice)




Why multiphysics?

e In complex physical systems, various phenomena emerge at different
scales (in both time and length)

e in many cases, essentially different physical phenomena are involved
at each scale, thereby requiring a different physical description
e Examples:

— Liquid crystals: macroscopic fluid-like equations are coupled to the
rotational motion governing microscopic rod-like molecules

— Magnetized plasmas: often described by coupling fluid-like eqns
for the plasma bulk to suitable kinetic theories for energetic particles

— Molecular dynamics: heavy nuclei essentially obey classical dy-
namics, while electrons require a full qguantum treatment



Two challenges in multi-physics modeling

e Kinetic-fluid models for magnetized plasmas
— Fluid & kinetic models for plasmas

— New hybrid plasma models

e Coupled classical-quantum dynamics
— Koopman wavefunctions for classical mechanics

— Hybrid classical-quantum wave equation

We shall exploit mometum map structures from symplectic geometry!



Geometric hybrid models
for magnetized plasmas



Kinetic and fluid models in continuum dynamics

e Fluid models arise from kinetic equations by an averaging process

e This averaging process is known in statistics as ‘the moment method’

KINETIC THEORY ON PHASE SPACE
Vlasov: 0,f +v:0_f-Vd-9 f=0

Micro-scales govern global dynamics

Moments

fv"fdv

7

FLUID MODELS

> Euler: atu+(u-V)u=—Vp, V-u=0

Neglects small scales

e Fluid closure models generally require low particle energy/temperature




Hybrid kinetic-fluid models for plasma physics

e Plasma simulations are mostly based on fluid (MHD) models
e These are invalidated by the presence of energetic particles

e Then, small-scale processes may control large-scale phenomenology

Energetic Solar wind interacts with Earth’'s magnetosphere



° need to be considered along with fluid macro-scales

e Hybrid philosophy: a fluid interacts with a hot particle gas

Multi-physics approach!

— MHD fluid models need to be coupled to kinetic-like equations

e Several coupling options are available, which need special care

e These usually arise by
, cf [Park et al. (1992); Kim et al. (1994); Todo et al. (1995)]

The consistency of hybrid models has been a 20-year open question

... we shall address this problem by using momentum maps!



Plasma models

o on phase space (Liouville):
traces particles (x(t), p(t)) — solves all details.

o (Vlasov, Boltzmann):
probability distribution f(x,p,t) — retains most details.

° (MHD, Hall-MHD):
local averages (momentum m(x,t), density p(x,t)) — forget details.



From particle motion to kinetic theory

Particle simulations for (xs, ps) solve all details, but at huge costs.
Kinetic theory: spread particles across phase-space — probability
Averaging processes (BBGKY) lead to the

A kinetic equation is an evolution equation for f(x,p).

Collisional — Boltzmann ( H-theorem)

— Vlasov (mean field model)



Kinetic approaches are expensive!

Better forget details? Fluid approaches are very convenient!



Magnetohydrodynamics (MHD)

e Fluid plasma model in which the magnetic field B is ‘frozen in’:

O¢(B-dS)+ £4(B-dS) =0, or, equivalently, /B+V x(Bxu)=0

Here, B - dS is a differential 2-form and £, denotes Lie derivative.

e Fluid equation is [Alfvén (1942)]

9 1 1
o (u-V)u=—"Vp- —BxVxB
ot p pop

where p is the transported mass density and p denotes pressure

e This is a Lie-Poisson Hamiltonian model! [Morrison&Greene('80)]



Still, energetic particles require kinetic theory!
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NIMROD particle traces in FRC 7 NIMROD particle traces in FRC
Charlson C. Kim - PSI Center Charlson C. Kim - PSI Center

Hot particle dynamics in (Pressure-Coupling) hybrid simulations (NIMROD code) for
Field Reversed Configuration experiments (FRCs). Right: low energy particles colored
by poloidal velocity. Left: high energy particles colored by axial velocity.

(higher magnetic gradients) and never cross the origin.
(Figure by the Plasma Science and Innovation Center, University of Washington).



Kinetic theory & electromagnetism: Maxwell-Vlasov

e Vlasov kinetic equation for f(x,p,t)...

of p Of < P ) of
- E+—xB].- 2L =0
8t+m 8X+q —I_mx op

e ...coupled to Maxwell’'s equations

OE q
eouoa—=V><B—uo—/pfd3p
t m
0B
— =—-VxE
ot

eOV-E:q/fd3p, V-B=0

e Thisis also a Lie-Poisson system! [Morrison('80), Marsden&Weinstein('82)]



Geometric continuum dynamics

Lagrangian and Eulerian variables are related by the relabeling symmetry,
which produces an inirinsic geometric description [Arnold (1966)] captur-
ing essential features such as circulation laws and dynamical invariants.

Ex. Incompressible ideal fluids move along geodesics on G = Diff,, (M)

Geometric approach based on variational and Hamiltonian formulations!



Lagrangian fluid dynamics of m(a,t) on the Lie group G possesses the

OF oG oF G 43a
om v Y n ’
Eulerian dynamics on the (dual) tangent space at identity possesses the
)
do’ b0

Fluids: (7). 1)) are Lagrangian coordinates, while o = fluid momentum m.

canonical Poisson bracket: {F,G} = /(

Lie-Poisson bracket (symmetry) : {F,G}(o) = <0', [

Vlasov: (1), 1)) are Lagrangian coordinates, while o = distribution function f.

Lie-Poisson reduction: o = o(n,v’) is a momentum map




Momentum maps are everywhere in mechanics

e Rotational symmetry for vectors ( ):
dFf dG
g, k]=gxk = {F,G}=p-—— X
du dp
e Relabeling symmetry for velocities ( ):
oF 6G
[v,ul]=(v-V)u—(u- V)V—){FG}—//J,(X)[ 5]dx
I
e Unitary symmetry for matrix operators ( ):

[A,B] = AB— BA — {F,G} = fLTr(zp [(;—F i—f])

e Canonical symmetry for phase-space functions (Vlasov equation):

oh Ok Oh Ok S5F 5(;] Prdp

[h’k]:ax'ap_ap'ax - {FG}_/f(X p) 5 of




Let's apply geometric mechanics
to formulate hybrid models!

— MHD fluid models need to be coupled to Vlasov-like equations



A geometric hybrid model: assumptions

e Consider a plasma of a fluid (MHD) bulk and an energetic component
e Express the dynamics in terms of the total momentum M = m + K,
where m = pu and K = [ pf d3p. Then one wants to assume a rar-

efied energetic component so that K-contributions can be neglected.

e In plasma literature, one replaces 0:K ~ 0 in the equation for the total
momentum M. This breaks Hamiltonian structure: no energy balance!

e The geometric Hamiltonian approach neglects K-contributions by re-
placing m ~ M in the Hamiltonian, which is then given by [T(2010)]

1 [|m]? 3 1 2 3. .3 3 1 > 3
H:—/—d X—|——/f|p| d°xd p—l—/pZ/{(p)d X—|——/|B| d°x,
2 p 2mp, 210



A geometric hybrid model: equations

e This process returns the same fluid equation as in the literature while

inserting new and inertial forces [T. (2010)]

0 1 1

—u+(u V)u———Vp——V/ppfd3p——B><V><B

ot p mp p pop

0 0 0
_f_|_ £_|_ _f_|_ th V(p u)_|_qh £_|_ X Bl- f —0
ot mp, ox mp, op

op oB

— 4+ V. =0, — =-VXxXE, E=—-uxB,

o TV o) at “

e Inertial forces — particles now move in the (Lagrangian) fluid frame.

e Dropping u in 2"4 eqn yields the non-Hamiltonian model [Park&al('92)]

e Helicity invariants [Holm, T. (2012); T, Tassi & Morrison (2015)]:

K
H:/A°Bd3X, /\Z/(’U,—mh—>Bd3X
P



Static equilibria — magnetized Landau damping

Linearize around static k—equilibria with fo = fo(p?/2) and define F =
[ fod?p, . For longitudinal propagation, one obtains (with v4 = b/\/10)

+00 Fd
w2—k§v§1—|—w(aw:|:wc) no—l—(w:ch)/ b = 0.
—oco kzpr —w x we

Old hybrid model — growth rate New hybrid model — growth rate
px10° ‘ ‘ X107

g -3
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4f — =1
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kzv A/(oC

New model (o = 1) gives magnetized kinetic damping

Spurious instability in the non-Hamiltonian model! (oo = 0)

[T, Tassi, Camporeale & Morrison (2014)]



Where’s the geometry? Semidirect products!

e The momentum shift M = pu + K corresponds to a Poisson diffeo-
morphism [Krishnaprasad & Marsden (1984)]

E: (%(R?)) D %Ham(R6)>* — (:{(R?))@>~%Ham(R6)>>l<
(pu, K) — (pu + K, K)

e Denote two-forms by Q4(R3). Hybrid model is Lie-Poisson on the Lie group

(Diff(R%) © Diffuam(R%)) ® (C(B?) x QX(R?))

cold & hot flows er_agrangian paths) dual to advectedzuantities: (p,A)




Where’s the geometry? Semidirect products!

e The momentum shift M = pu + K corresponds to a Poisson diffeo-
morphism [Krishnaprasad & Marsden (1984)]

E: (x(R:i) D %Ham(Re)))* — <~,{(R3)@>:{Ham(R6))>|<
(pu, K) — (pu + K, K)

e Denote two-forms by Q2(R3). Hybrid model is Lie-Poisson on the Lie group

(Diff(R%) ® Diffram(R®)) ® (C™(R?) x Q*(R?))

cold & hot flows ﬁagrangian paths) dual to advectedzuantities: (p,A)

e Semidirect-product arises from cotangent-lifts of Diff .,,(R3) acting
on Diff(R®) (subgroup action), whose equivariant momentum map is

fx.p) = [P f(x,p) d®p = K(x)



Where’s the geometry? Semidirect products!

e The momentum shift M = pu + K corresponds to a Poisson diffeo-
morphism [Krishnaprasad & Marsden (1984)]

E: (X(R?)) D %Ham(R6))* — (:{(R?))@>~%Ham(R6)>>l<
(pu, K) — (pu + K, K)

e Denote two-forms by Q4(R3). Hybrid model is Lie-Poisson on the Lie group

(Diff(R%) © Diffuam(R%)) ® (C(B?) x QX(R?))

cold & hot flows er_agrangian paths) dual to advectedzuantities: (p,A)

e Semidirect-product arises from cotangent-lifts of DifFHam(R3) acting
on Diff(R®) (subgroup action), whose equivariant momentum map is

f(x,p) = [P f(x,p)d*p = K(x)

e We confused Diffam(R3) with its extension Diffyam(R3) xR (see later)



Guiding-center (GC) motion: analogy with liquid crystals

Particle

‘ Guiding Center
]

origin

e In liquid crystals, rod-like molecules move carrying an orientation, i.e.
a rotational field R(x,t) € SO(3) [Gay-Balmaz, Ratiu & T ('13)]

e Locally, molecules align along a certain direction called director field

H(ZU, t) — R(CB, t)nO(w) 3 a’in(wa t) — —’77;(33, t) X H(CU, t)

where v = y#(x, t) dz’e, is a rotational strain (topological defects).
e Littlejohn’s GC theory (to 15t order) has a similar formulation [T ('16)]:

p(x,t) = p(t)R(x, t)ag(x), R(z,t) = e~ OBb(x.)/e

where Ejk = —€,b; identifies the magnetic field direction b = B/B.



Guiding-center hybrid-MHD

Alex Close’s PhD thesis:

9 1 1
p<—+U-V)U:—Vp——V-P——BXVXB

0 mp, 10
dp 6]"
V- -(pU)=0, V- (fX)=0
5 TV (pU) 5 TV ()
@:—VXE, E=-UXxB,
ot

where X (x,v)) = (u(x,v)), a|(x,v))) and P(x,1) are given by

X = (Bl*( || + ) — BE)T X (ahE* — V(UHUH)) , gli . [&hE* — V(vU)])
P:/flzjn(u— )le—l—'v”b(u— )l—l—vabT—I—,uB(l—bb )]d,ude

TV
new stress terms ‘usual’ CGL pressure tensor

e When U = 0, P reduces to the newly found GC stress tensor [Brizard&T('16)]

e Variational formulation contains a lot of geometry! [Close, Burby & T ('18)]



First message:

to derive reduced models, it's better (if possible) to insert the approxi-
mations in the Hamiltonian/Lagrangian than in the eqns of motion!




Geometric approach to
hybrid classical-quantum systems

Wojciech H. Zurek

Phys. Today (1991) - e
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Delineating the border between the quantum realm ruled by the Schrédinger equation and the classical realm

ruled by Newton’s laws is one of the unresolved problems of physics.

Figure 1



The search for classical-quantum coupling

Since the raise of quantum mechanics, classical-quantum coupling has
emerged as an outstanding question in

e Quantum measurement theory: when a quantum state is measured,
it undergoes an interaction with a classical apparatus

e Chemical physics: necessity of approximating the nuclei as classical
objects interacting with an electron ensemble

After about a century of continuing efforts, what do we know?

e When a quantum state interacts with a classical system, the latter
undergoes an uncontrollable disturbance. (cf. N. Bohr)

e When a quantum state interacts with a classical system, the former
undergoes decoherence (lack of pure state solutions).

NOT MUCH! — Let’s revise both quantum and classical mechanics. . .



Quantum & classical states [Chernoff & Marsden (1976)]

e Quantum pure states: normalized L2 —functions (ie. [|y(z)|?dz = 1)

Schrodinger’s equation: ihOpp = Hp

e Quantum mixed states are positive-definite operators p with Trp = 1:

von Neumann equation: ihowp = [H, p|,

where [-, ] is the commutator. (Setting p = ¥)1 yields pure states).

e Classical pure (particle) states are points in phase-space
OH OH

Hamilton’s equations for (q,p): Gg=—, p=——0u
Op dq

e Classical mixed states: positive-definite densities with [p(q, p) dgdp = 1:

Liouville (Vlasov) equation: op={H,p}

where {f, g} = 8¢f0pg — FpfOqg is the canonical Poisson bracket.
(Setting p(q, p,t) = d(q — q(t))o(p — p(t)) yields pure states).



Objective:
Hamiltonian model for interacting classical and quantum particles.

Ideally, we want to construct a hybrid density

p® p(q,p) — p(a,p)

More difficult than kinetic-fluid, where particles and fluid evolve separately.



Two possible strategies for Hamiltonian hybrids

1. Write quantum states in terms of (Liouville-like) probability densities

e The Wigner-Moyal formalism v (x) — W, (x,p) provides a de-
scription of quantum mechanics in terms of phase-space densities

e Approach widely studied. Its Hamiltonian setting is noncanonical
[Bialynicki-Birula & Morrison ('91)], thus leading to complications
2. Write classical mechanics in terms of (Schrodinger-like) wavefunctions
e Following Koopman’s work, this was proposed in [Sudarshan (1976)]

e This approach seems promising because wavefunctions have a sim-
ple (canonical) Hamiltonian setting — important simplification

... Second method leads to interpretative problems — can we solve those?



The Koopman-von Neumann equation

Question: can we define an L°—function W(q, p) such that the probabil-
ity density p = |W|? satisfies the classical Liouville equation d;p = {H, p}?

Theorem (adapted from [Koopman, 1931]). Let H(q,p) be a
phase-space function and let W € L2(R2) satisfy the

KvN equation ihoyW = {ihH,V}

Then p = |W|? satisfies O;p = {H, p}. (See also [von Neumann (1932)]).

The Hermitian (self-adjoint) operator ;7 := {ihH, }is called the Liouvillian

ihoW = LV

Sudarshan extended KvN to include the interaction with quantum de-
grees of freedom: hybrid wavefunction V(q,p) ® ¥(x) — T(q,p,x).

However, by invoking superselection rules for physical consistency, Sudar-

shan's (Hamiltonian!) theory leads to fundamental interpretative issues.




Hamiltonian structure of the KvN equation

The KvN eqn. possesses the standard (canonical) variational principle (VP):

t ~
5 / ? / (h Re(iW*8,W) — W*1, Hw) dqdp dt =0,
t1

Remarks:

e Conserved energy: [W*LyWdgdp = h [H Im{W, V*} dqdp = const.

This is different from the physical energy [pH dgdp = [|W|2H dgdp
(which is also conserved). Interpretative issue of the KvN formula p = |W|?

e L is not unique: the correspondence H — {ihH,_} is many-to-one

e More fundamental issue: the integrand in the VP does not transform
consistently under gauge transformations W(g, p) — e*5(@P)W(q, p)

Classical gauge covariance (equivariance) is violated

Claim: the Koopman-von Neumann theory is incomplete.



Canonical transformations and their central extension

e Group theory: L := {ihH,_} generates canonical transformations

(a:7) = (Q(a,p), P(4,p)) , (Q, P) € Diffuom(R?)

e In classical mechanics, one says that the Hamiltonian function H
generates the dynamics (Hamiltonian flow) by Hamilton’s equations.

e However, Hamiltonians are only defined up to constants: H and
H' = H + K generate the same dynamics!

e Van Hove (1951): don't look at Diffy,m(R?), but rather look at the
central extension Diffy.m(R?) X R (strict contact transformations)

12(0)

" ia-a)

Here, o denotes composition, * denotes pullback, and A = (¢dp — pdq)/2.

Product rule: — (n1, k1)(m2, K2) = (7710772, K1+ko+

— The Lie algebra coincides with the Poisson algebra (C*°(R?),{-,-})



Modifying the Louvillian: prequantum operator

Theorem [Van Hove, 1951]. Strict contactomorphisms carry the fol-
lowing (right) unitary representation on L?(R?) (denote z = (¢, p)):

W(z) — eihH(rt [ (" A=A)) (n*W),

whose infinitesimal generator is given by ih_lfH, where

A ~ 1 A
Lg=Lg— (52 -Vz H — H). (H — Ly is one-to-one: uniqueness!)

-

Ve

Lagrangian!

There's a whole lot of geometry here! In geometric quantization (pre-
quantization), the modified Liouvillian EAH is called prequantum operator:

Lie algebra structure: (L5, L] = ihL (H,K}

Given a function A(z), the map A(z) — ih 1L 4 is a Lie Algebra isomorphism



Modifying the Koopman-von Neumann theory

Now, we perform the replacement L — L7 in KvN theory:
e KvN equation becomes ih9;W = L ;W (notice: A no longer cancels!)

e The KvN variational principle becomes gauge-covariant (equivariant):

t A
5 / i / (h Re(iW*8,W) — W/ Hw) d2 dt = 0,
t1

o Conserved energy: [W*LWd2z = [H(|W[? + div.J)d?z with

1
J = §z|\ll|2—|—ih\ll*JV\U, with J = ( _01 (1) )

— What's the meaning of the quantity |V |? + div 7 ?



The quantity |V|? + div g

Answer [Gay-Balmaz, T (2018)]: The map
J W V2 +divT

is a MOMENTUM MAP for the action of strict contacto’s on L?(R?),
that is it satisfies

1 A
(AlJ(v)) = ZQ(V, iR 1L W), VA e C®(R?),

where (-|-) is the L?—inner product and Q(W1, W) = 2k Im (W |Ws).

e Setting p = |W|? +div J returns the Liouville equation d;p = {H, p}

The sign of p is preserved in time: positivity is preserved!

e Notice: [divJ d°z =0 — J doesn't contribute to total probability!

The quantity |W|°+div J is a representation of the classical probability density!



Recap: Koopman—Van Hove classical mechanics

Léon Van Hove

Bernard Osgood Koopman

Combining KvN theory with Van Hove's central extension yields the fol-
lowing (Clebsch) representation of the Liouville probability density:

1
p=|W[2+nlm{V" W)+ 5c|iv(z|\|1|2)

Koopman-van Hove equation (KvH) for the classical wavefunction:

1
inY _ {ihH, W} — <—z .VH — H)W
ot 2




Let’s exploit Shudarshan’s idea for classical-quantum hybrids!

George Sudaréhan at UT Austin (Texas) in 1989 -

In 1976, George Sudarshan (Sep 1931 — May 2018) first proposed the idea
of using classical (KvN) wavefunctions for classical-quantum coupling.

However, as we showed, KvN alone is incomplete. Use Koopman—Van Hove!



Construction of
classical-quantum hybrids



Towards hybrid theories: the quantization process

e There is a well-known procedure taking the Koopman—van Hove equa-
tion th oWV = ﬁHW into the Schrodinger equation 1A O}V = AHv (with
H =T+ V, kinetic + potential).

e Upon avoiding technicalities, one sets

to obtain ih W (q) = [(—ih0q)? + V (q)]W¥(q).

e In short: V(g,p) — V(q)

e Although this (formal) process is well-known in geometric quantiza-
tion, it is pretty unknown within the physics community

Caution: here we focus on the case H =T+ V.
However, different methods lead to the same result (not covered here)



Strategy: partial quantization procedure

Write the KvH equation for 2 classical particles and quantize only one!

T(Q7p7 X, O-) — T(Q7p7 QZ‘)




The hybrid wave equation

The partial quantization procedure yields the hybrid wavfunction equation

i = (i, T} - (EZ-VZH—H)T — Lo,

where z = (q,p) and H = H(z) is an operator-valued function on phase-space

Equations of the same type were found by Boucher & Traschen in 1988!

However, these equations were rejected since
e they were claimed by the authors to yield “interpretative difficulties”

e Also, B&T claimed the absence of a positive conserved energy

On the other hand, by construction the same equation arises from the VP
t ~
57 (h Re(iT*0,T) — T*L ﬁ'r) d2zdx dt =0,
t1

— The sign of the conserved energy fT*EAﬁT d?z dx is preserved in time!



Hybrid probability density

In both classical and quantum mechanics, there exists a density (function
p(q, p) or operator p) such that the total energy is formally written as

(p|H) .

The energy is linear in p and H. (Here, (-|-) denotes the natural inner product).

Question: Can we define a density-like object D such that

/T*Eﬁ’r 42z de = (D|H) ?

Answer: Yes! We have fT*ﬁAﬁT d2zdz = Tr [ D(z) H(z) d?z, where

D(z) := T(2)T1(2) + ir{T(z), TT(z)} + %div(zT(z)TT(z))




More on probability densities: quantum and classical

Question: Fine — we have a hybrid density D(z), but how do we recon-
struct the quantum density operator p and the classical density p(q, p)?

Answer: We simply project ﬁ(z) on the quantum density operators and
on the classical density functions, respectively:

p= [ D(z)d, o(q,p) = TrD(z)

e Quantum density operator: p = /T(Z)TT(Z) d’z — POSITIVE!

— Only available hybrid theory capturing positivity of the quantum density!

e Classical density: p(q,p) = |T(2)|? — ih{T(z)T, T(z)}+ % div(z|T(z)|2)

— Lack of classical positivity in hybrid systems was explained by Boucher (1988)



Dynamics of the hybrid probability density

In 1981, Aleksandrov and Gerasimenko independently proposed an equa-
tion for the hybrid density D(z): the quantum-classical Liouville equation

D i o~ Ll .
EZ_ZFL [H,D]+ 5({H7D}_{D7H})

Question: We know this is not Hamiltonian, but what's the ﬁ—equation

resulting from our Hamiltonian construction?

Preliminary question: What do we really know about D?

e The map TTT — D is the dual of A(z) — 22 (no LA isomorphism!)

e Unfortunately, D does not enjoy momentum map properties

— There is no closed equation for D in the general case!

Answer: An explicit calculation yields surprising similarities!

25 R RN ~ o~
O = —in"\[H, D] + ({H, D} - (D, H}) + F(T,97)

# is a nasty function: no closed eqgn (consistent with Salcedo (1999))



Interpretation of the theory: decoherence

From the previous equation for D (or for T), we obtain the dynamics for the
quantum and classical probabilities p = [ D(z) d2z and p(q, p) = Tr D(z):

., 0p = 0 dp —~
h—:/H,Dd | 90 — T {H.D
ihge = J1H,Pld i ~ D}

OK — these are pretty good looking formulas, but what do they mean?

e Pure quantum state solutions p = @DQN are no longer preserved in time

— Absence of pure quantum states — Quantum decoherence!

e Particle-like solutions p(z,t) = 6(z — ¢(t)) are also lost

— Absence of pure classical states — ‘Classical decoherence’!

e Generally, sgn(p) # const: this is explained by using Wigner functions



Second message:

If you have a Hamiltonian theory (e.g. KvN or KvH), look for momentum
maps — they will tell you what to do!




That’s all — thanks!



Mean-field ansatz: recovering previous theories

Question:
How do we compare with previous theories (mathematically consistent)?

Let us adopt the mean-field ansatz (no classical-quantum correlations):
T(z,2,t) = V(z,t)y(x,t) — D(z,t) = f(z,1) p(t)
with p = ¢ and f = |[W|2 4+ KIm{W¥* W} + div(z|V|?)/2.

Answer: this yields exactly the mean-field model from chemical physics!

m%: [/fﬁd%,ﬁ] , % = {Tr(ﬁﬁ),f}

e The second equation has single-particle solutions f(z,t) = d(z — {(t))

— Pure states are recovered in the absence of classical-quantum correlations!

e Notice that sgn(f) = const.

— Positivity is recovered in the absence of classical-quantum correlations!
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Abstract

Many physical situations involve the interplay of different phenomena at different scales. The corresponding
description requires the use of multi-physics models, whose mathematical formulation poses several challenges.
Examples are found in the classical-quantum coupling in molecular dynamics or in the coupling between mean
flow and fluctuation kinetics in turbulence. In plasma physics, the interaction of energetic particles (obeying
kinetic theory) with a fluid bulk (obeying magnetohydrodynamics) requires formulating hybrid kinetic-fluid
models, which are often obtained by making assumptions that destroy the correct energy balance. This talk
shows how momentum-map techniques in geometric mechanics provide a powerful unifying framework for both
kinetic-fluid and classical-quantum coupling, thereby leading to new hybrid models in different contexts.

1 Lecture notes

What can you do with a momentum map?

For symplectic maps, the momentum map is known, mostly as a generalization of Noether theorem concerning
conserved quantities. We will talk here about momentum maps in the case of non-conserved quantities.

The moment method - starting with kinetic theory on phase space and looking at the moment equations, obtain
Euler fluid dynamics equations.

Express particle motion in new frame, obtain a new transport term and inertial forces.

Static equilibria - obtain a new dispersion relation with a. Then, we plotted the growth rate for the old hybrid
model and the new hybrid growth rate. In the old hybrid model, we get an instability, but there is no source of
energy for this, and the only reason for this spurious instability is because the system does not conserve energy.
This convinced us that the new hybrid model is fundamentally different.

Where’s the geometry? This momentum shift is a momentum map, corresponding to a Poisson diffeomorphism.
The resulting semidirect product arises naturally. There is a momentum map underlying this - the K (z), exactly
the term we want to neglect.

Guiding center (GC) motion: analogy with liquid crystals. In liquid crystals, rod-like particles are transported
in space, so a rotational field needs to be taken into account as well as a velocity field. It turns out that to the first
order, there is an analogy between liquid crystals and guiding center. The director field description of liquid crystals
applies to first order Littlejohn’s GC theory. The analogy, in a way, is between the physical molecule dragged in
space and the particle orientation dragged in space.

GC hybrid-MHD - would like to develop hybrid models in which the energetic particles are approximated by the
GC description. Can one build a GC hybrid theory? Yes, but since there is no natural action of the diffeomorphism
on the configuration space it is not easy. Need to go to higher dimensions, build the theory there, then project to
the 4 dimensional configuration space.

Equations for x and P: contain the usual pressure tensor and new stress terms. This model was derived by
variational methods.

Applying this technique to chemical physics: related to the search for classical-quantum interactions. How to
write a hybrid quantum-classical theory? Using the von-Neumann approach to write classical Hamiltonian theory
in quantum language by looking at averages (analogous to mixed states in QM) instead of particles (analogous to
pure states in QM).



Argument in favor of non-positive classical densities

In QM, different ‘pictures’ are available: Schrodinger, Heisenberg, Dirac,. . .
The phase-space picture goes back to Wigner (1932) and Moyal (1949)

Wigner transform (LA isomorphism): (ﬁ, [ ]) — (VVpa{{'a }}>

W, (g, p) is a phase-space function satisfying the Wigner-Moyal equation

00 = {H, W) (£ 3} deforms {-, })

e Property 1: W, is not positive definite

e Property 2: {{A, B} = {A, B} if A or B is a quadratic function
Consider a harmonic oscillator (coord z) coupled to a nonlinear system (co-
ord ¢): H(z, () quadraticinz. WM eqn: OiW, = {H, W), }» + {{ H, W) }}¢

OWro
ot

8WNL

= [{H, Wy }a %, = [{LH, W, ¢ ¢

— While W is essentially classical, it may become negative because so may W, !
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