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Jumps of energy near a separatrix in slow-fast Hamiltonian systems -
Talk by Sergey Bolotin

Lecture notes (Ori S. Katz)

October 11, 2018

Abstract

We consider a Hamiltonian system slowly depending on time: H = H (z,7), 7 = ¢ < 1. For small € the
energy H changes slowly: H = O(e). If the frozen autonomous system with Hamiltonian H (-,7) has one degree
of freedom and energy levels are closed curves, there is an adiabatic invariant I which changes much slower.
Then the energy H = h(r,I) changes gradually. However, the adiabatic invariant is destroyed for trajectories
passing near equilibria. Neishtadt showed that if the frozen system has a hyperbolic equilibrium with a figure
eight separatrix, then generically the energy will have quasi-random jumps of order ¢ with frequency of order
1/|Ine|. We partly extend Neishtadt’s result to multidimensional systems such that for each 7 the frozen system
has a hyperbolic equilibrium possessing several transverse homoclinics. The trajectories we construct have
quasirandom jumps of energy of order € with frequency 1/|Ilne| while staying distance of order e away from
the homoclinic set. Gelfreigh and Turayev showed that if the frozen system has compact uniformly hyperbolic
chaotic invariant sets on energy levels, then generically there exist trajectories with energy having quasirandom
jumps of order ¢ with frequency of order 1. Thus the energy may grow with rate of order e. However, this
result does not work near a homoclinic set, where dynamics of the frozen system is slow, so there is no uniform
hyperbolicity.

1 Lecture notes:

AssumeH (q,p,7), T = et, e < 1. Then the energy E (t) = H (q(t),p(t), et) will slowly change, E = O (¢).

Can the energy grow? Can it have random jumps, etc.? This is a simplified version of the classical problem of
Arnold diffusion.

1 DOF: Then the frozen system, for which ¢ = 0, is an autonomous Hamiltonian and 7 is a fixed parameter.
Then, the Hamiltonian can be written as

H-(g,p) =H(q:p, 7).

It is integrable, and its level sets are closed curves.

E— "

The adiabatic invariant I (7, E) = [ pdg is the action of the periodic system.

For an interval 0 < 7 < T the adiabatic invariant changes at most in order e.

What happens to the energy? To first approximation, the energy changes along the level curves of I (1, E) =
Const..

But this isn’t true if there are fixed points. Suppose a fixed point z (7). Away from the separatrix, there will be
adiabatic invariants, but close to it this will break. There are many works that have dealt with this situation, the
lecturer’s inspiration has been Neistadt 1975.



Note: 7 will be used for the time variable instead of t.

The goal of this work is to obtain similar results for large dimensions. Assume an n degree of freedom (DOF)
system. If it’s integrable, there are similar results. But if the frozen system is not integrable, there are generally no
adiabatic invariants. However, there is something that works. Assume a periodic orbit of the non-integrable frozen
system ~,;g. Around it, we can define an adiabatic invariant by the same formula. However, since we are at higher
dimensions, this procedure only makes sense close to the periodic orbit. Thus we obtain an approximate adiabatic
invariant. However, periodic trajectories in non-integrable n-dimensional systems are generally not stable.

What can be done? Assume a chaotic system, for example a Smale horseshoe, with 2 periodic trajectories, and
trajectories that follow these orbits closely transitioning from one to the other. This is an example of symbolic
dynamics - denote how many times a trajectory circles one periodic trajectory before transitioning to the other
periodic trajectory.

Then there will be an adiabatic invariant related to each periodic orbit, Iy 2 (7, E) ~ Const. . As usual in
hyperbolic dynamics, a close trajectory will jump from one periodic trajectory to the other.

This work was done by Gelfreich - Turayev - 2008 (GT08) - using this, they proved the existence of solutions
that gain an arbitrary increase of energy.

In GTO08, they considered no critical point. The lecturer will talk of work on systems with hyperbolic fixed
points. This is related to many works on Arnold diffusion.

The results require many assumptions to be made:

Assume an N DOF Hamiltonian system with a hyperbolic critical point z (7) for the frozen system ., and at
least 2 transverse homoclinic orbits (figure 8 orbits). (This is very similar to GT08 but with homoclinic trajectories.)

For each orbit, we derive the Poincare function

Py (1) = 55 pdgq.
v

Assume these functions are non-trivial, for example assume PJ (7) > 0, Pj (7) < 0. Construct trajectories that go

around one homoclinic trajectory with a given energy, and then the other (with a different energy generally).

— d
Assume H (2 (7),7) = 0, and the energy in the considered trajectory is bounded - there exist 0 < a < b such
that ea < |E| < eb, so we're not too close or far from the homoclinic trajectory, along which the energy is 0.



Assume there are some eigenvalues {£\; (7)}._,, and assume the smallest is positive and real, 0 < Xy (1) <

Re (X\j (1))Vj # 1. Then the unstable manifold will have a strong unstable direction. Assume the trajectory we
consider v¥ is not in the strong stable/unstable directions.
Denote vk (7) as the exit (+) and entrance (-) vectors.

Another condition - the symplectic form w = dp A dq satisfies w (vf} (1), o (T)) > 0 for any combination of

Ky ko = 1,2.

Then, there is a theorem:

e Theorem 1:

For all hg > 0, for all sequences {ki}ij\il, k; € {1,2}, for a small enough € > 0, there exists a trajectory with energy

satisfying £ (0) = —hg - €, and a sequence of times {Ti}fils.t.
elne
AT, =T —Th = ———
Ti = Tit1 — T, N ()
Ei(r)\ _ E(tiv1)  E(n) _ B, (1) 2
A = — = u A i ,
(/\1 (ﬁ‘)) A (Tig1) A (m) e A7 +0(F)

where P}, (;) is the derivative of Py, (7;).
——

So there is a trajectory with these energy leaps. Note that in this approach, we take a fixed sequence and then
choose the small e.
Thus, for k1 = ks = ... = ky = k , then

Ji (1,E) = Py (1) — 0 ~ Const.

This means that J is almost constant, as can be seen by the theorem, along the sequence (7;,¢;). This looks very
similar to the adiabatic invariance.

Note: This works only for trajectories that remain close to the homoclinic trajectories, ea < |E| < eb. Therefore,
N must be finite, else we may exit this energy regime. So in order for the energy to stay in this interval, the sequence
{k;} must be chosen carefully at each step.

This argument produces the following theorem:



e Theorem 2:

For any Lipschitz function h : [0,7] — (0,tc0), for any 6 > 0, for a small enough e > 0, there exists a trajectory
and a sequence {Ti}i]\il s.t.
|E (1;) + eh (13)] < €d.

Note: Here, the number of steps N depends on e.
We choose 7 =0, 75 > T.

Thus, we may move from one curve to the other. Along one curve the energy grows and along the other the
energy decreases, and the jumps are quasi-random.

An example in which this doesn’t work:
Motion along the 2-torus

1
Hr(q,p) = 3 \p|2 + Vi (q), q € T?(two — torus)

There are at least 2 homoclinic orbits. If the energy is far from them, the Turayev theorem works. But next to
them E' = 0 so the assumption ea < |E| < eb does not hold and the theorem doesn’t apply.

The initial goal of this work was to track the transition around E = 0. But here this cannot work.

Another example where nothing works:
Consider a pendulum

_ pi+p3

(i 5

+A2(1)(cosqr — 1) + A2 (1) (cosqe — 1), 0 < Ay < Ao

Then the condition w (vf} (), v"? (7’)) > 0 is not satisfied except inside the homoclinic trajectories, so there is no

trajectory moving between loops.
In fact, only when the system has chaotic behavior this condition can be satisfied.

A few words about the proofs:
Introduce the extended symplectic form

w=dpAdq+ dh Ndr,

and the extended Hamiltonian

HG (Qap77-7h) = H(Q7p77—) +€h = 07



where we consider the zero energy level set. Then

. 0

T = %’He =€
For € = 0, critical manifold M = {(z (1), 7, h)}. It is a symplectic, normal-hyperbolic manufold. For ¢ = 0, there
are a lot of homoclinic orbits on the manifold, each giving rise to a family of hetroclinic orbits. Then, by shadowing,
glue hetroclinic and homoclinic orbits together, E = eh.

2 Questions

- What are v% (1)?

() = Jim 5% ()M,

It’s a vector tangent to the homoclinic orbit in the future (past for (-)).



