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Gravitational Waves, LIGO, and Numerical Relativity

•Gravitational waves are ripples in the fabric of spacetime that
were predicted by Einstein in 1916.

• Gravitational waves were directly observed on September 14, 2015
by the Advanced LIGO project.

•Numerical relativity is necessary to compute the black hole
mergers that generate gravitational waves.
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General Relativity and Gauge Field Theories

• The Einstein equations arise from the Einstein–Hilbert action
defined on Lorentzian metrics,

SG(gµ⌫) =

Z 
1

16⇡G
gµ⌫Rµ⌫ + LM

�p�gd4x,

where g = det gµ⌫ and Rµ⌫ = R↵µ↵⌫ is the Ricci tensor.

• This yields the Einstein field equations,

Gµ⌫ = Rµ⌫ � 1

2
gµ⌫g

↵�R↵� = 8⇡GTµ⌫,

where Tµ⌫ = �2�LM
�gµ⌫ + gµ⌫LM is the stress-energy tensor.

• This is a second-order gauge field theory, with the spacetime
di↵eomorphisms as the gauge symmetry group.



4

Gauge Field Theories

• A gauge symmetry is a continuous local transformation on the
field variables that leaves the system physically indistinguishable.

• A consequence of this is that the Euler–Lagrange equations are
underdetermined, i.e., the evolution equations are insu�cient
to propagate all the fields.

• The kinematic fields have no physical significance, but the dy-
namic fields and their conjugate momenta have physical signifi-
cance.

• The Euler–Lagrange equations are overdetermined, and the ini-
tial data on a Cauchy surface satisfies a constraint (usually elliptic).

• These degenerate systems are naturally described using multi-
Dirac mechanics and geometry.
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Example: Electromagnetism

• Let E andB be the electric and magnetic vector fields respectively.

•We can write Maxwell’s equations in terms of the scalar and vector
potentials � and A by,

E = �r�� @A

@t
, r2� +

@

@t
(r ·A) = 0,

B = r⇥A, ⇤A +r
✓
r ·A +

@�

@t

◆
= 0.

• The following transformation leaves the equations invariant,

�! �� @f

@t
, A! A +rf.

• The associated Cauchy initial data constraints are,

r ·B(0) = 0, r · E(0) = 0.
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Example: Gauge conditions in EM

• One often addresses the indeterminacy due to gauge freedom in a
field theory through the choice of a gauge condition.

• The Lorenz gauge is r ·A = �@�@t , which yields,

⇤� = 0, ⇤A = 0.

• The Coulomb gauge is r ·A = 0, which yields,

r2� = 0, ⇤A +r@�
@t

= 0.

• Given di↵erent initial and boundary conditions, some problems
may be easier to solve in certain gauges than others. There is no
systematic way of deciding which gauge to use for a given problem.
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Noether’s Theorem

⌅ Theorem (Noether’s Theorem)

• For every continuous symmetry of an action, there exists a quantity
that is conserved in time.

⌅ Example

• The simplest illustration of the principle comes from classical me-
chanics: a time-invariant action implies a conservation of the Hamil-
tonian, which is usually identified with energy.

•More precisely, if S =
R tb
ta
L(q, q̇)dt is invariant under the transfor-

mation t! t + ✏, then

d

dt

✓
q̇
@L

@q̇
� L

◆
=

dH

dt
= 0
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Noether’s Theorem

⌅ Theorem (Noether’s Theorem for Gauge Field Theories)

• For every di↵erentiable, local symmetry of an action, there exists
a Noether current obeying a continuity equation. Integrating
this current over a spacelike surface yields a conserved quantity
called a Noether charge.

⌅ Examples

• The Noether currents for electromagnetism are,

j0 = E ·rf j = �E@f
@t

+ (B⇥r)f
• The Einstein–Hilbert action for GR yields the stress-energy tensor,

Tµ⌫ = �2�LM

�gµ⌫
+ gµ⌫LM

as the Noether charge for spacetime di↵eomorphism symmetry.
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Consequences of Gauge Invariance in GR

• ByNoether’s second theorem, the spacetime di↵eomorphism
symmetry implies that only 6 of the 10 components of the Einstein
equations are independent.

• Typically, this is addressed by imposing gauge conditions, such
as the maximal slicing gauge, or de Donder (or harmonic) gauge.
The de Donder gauge is Lorentz invariant and useful for gravita-
tional waves.

•When formulated as an initial-value problem, the Cauchy data
is constrained, and must satisfy the Gauss–Codazzi equations.

• The gauge symmetry implies that we obtain a degenerate vari-
ational principle.
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Implications for Numerics

•We wish to study discretizations of general relativity that respect
the general covariance of the system. This leads us to avoid
using a tensor product discretization that presupposes a slicing of
spacetime, rather we will consider simplicial spacetime meshes.

•We will considermulti-Dirac mechanics based on a Hamilton–
Pontryagin variational principle for field theories that is well adapted
to degenerate field theories.

•We will study gauge-invariant discretizations based on varia-
tional discretizations using gauge-equivariant approximation spaces.

• This is important because gauge-equivariant spacetime finite ele-
ment spaces lead to gauge-invariant variational discretizations that
satisfy a multimomentum conservation law.
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Continuous Hamilton–Pontryagin principle

⌅ Pontryagin bundle and Hamilton–Pontryagin principle

• Consider the Pontryagin bundle TQ � T ⇤Q, which has local
coordinates (q, v, p).

• The Hamilton–Pontryagin principle is given by

�

Z
[L(q, v)� p(v � q̇)] = 0,

where we impose the second-order curve condition, v = q̇ using
Lagrange multipliers p.
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Continuous Hamilton–Pontryagin principle

⌅ Implicit Lagrangian systems
• Taking variations in q, v, and p yield

�

Z
[L(q, v)� p(v � q̇)]dt

=

Z 
@L

@q
�q +

✓
@L

@v
� p

◆
�v � (v � q̇)�p + p�q̇

�
dt

=

Z ✓
@L

@q
� ṗ

◆
�q +

✓
@L

@v
� p

◆
�v � (v � q̇)�p

�
dt,

where we used integration by parts, and the fact that the variation
�q vanishes at the endpoints.

• This recovers the implicit Euler–Lagrange equations,

ṗ =
@L

@q
, p =

@L

@v
, v = q̇.
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Multisymplectic Geometry

⌅ Ingredients
•Base space X . (n + 1)-spacetime.

•Configuration bundle. Given by ⇡ :
Y ! X , with the fields as the fiber.

•Configuration q : X ! Y . Gives the
field variables over each spacetime point.

• First jet J1Y . The first partials of the
fields with respect to spacetime.

⌅ Variational Mechanics
• Lagrangian density L : J1Y ! ⌦n+1(X ).

•Action integral given by, S(q) = RX L(j1q).

•Hamilton’s principle states, �S = 0.
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Continuous Multi-Dirac Mechanics

⌅ Hamilton–Pontryagin for Fields1

• In coordinates, the Hamilton–Pontryagin principle for fields is

S(yA, yAµ , p
µ
A) =

Z

U

"
pµA

 
@yA

@xµ
� vAµ

!
+ L(xµ, yA, vAµ )

#
dn+1x,

which yields the implicit Euler–Lagrange equations,

@pµA
@xµ

=
@L

@yA
, pµA =

@L

@vAµ
, and

@yA

@xµ
= vAµ .

• The Legendre transform involves both the energy and momentum,

pµA =
@L

@vAµ
, p = L� @L

@vAµ
vAµ .

1J. Vankerschaver, H. Yoshimura, ML, The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Clas-
sical Field Theories, J. Math. Phys., 53(7), 072903, 2012.
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Geometric Discretizations

⌅ Geometric Integrators

• Given the fundamental role of gauge symmetry and their associated
conservation laws in gauge field theories, it is natural to consider
discretizations that preserve these properties.

•Geometric Integrators are a class of numerical methods that
preserve geometric properties, such as symplecticity, momentum
maps, and Lie group or homogeneous space structure of the dy-
namical system to be simulated.

• This tends to result in numerical simulations with better long-time
numerical stability, and qualitative agreement with the exact flow.
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The Classical Lagrangian View of Variational Integrators

⌅ Discrete Variational Principle

q a(��)

q b(��)

!q t( )

Q

q t( ) varied�curve

q0

qN

!qi

Q

qi varied�point

•Discrete Lagrangian

Ld(q0, q1) ⇡ Lexact
d (q0, q1) ⌘

Z h

0
L
�
q0,1(t), q̇0,1(t)

�
dt,

where q0,1(t) satisfies the Euler–Lagrange equations for L and the
boundary conditions q0,1(0) = q0, q0,1(h) = q1.

• This is related to Jacobi’s solution of the Hamilton–Jacobi
equation.
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The Classical Lagrangian View of Variational Integrators

⌅ Discrete Variational Principle
•Discrete Hamilton’s principle

�Sd = �
X

Ld(qk, qk+1) = 0,

where q0, qN are fixed.

⌅ Discrete Euler–Lagrange Equations
•Discrete Euler-Lagrange equation

D2Ld(qk�1, qk) +D1Ld(qk, qk+1) = 0.

• The associated discrete flow (qk�1, qk) 7! (qk, qk+1) is automati-
cally symplectic, since it is equivalent to,

pk = �D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1),

which is the characterization of a symplectic map in terms of a
Type I generating function (discrete Lagrangian).
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⌅ Examples of Variational Integrators

•Multibody Systems

Simulations courtesy of Taeyoung Lee, George Washington University.

Simulations courtesy of Todd Murphey, Northwestern University.

•Continuum Mechanics

Simulations courtesy of Eitan Grinspun, Columbia University.
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Lagrangian Variational Integrators

⌅ Main Advantages of Variational Integrators

•Discrete Noether’s Theorem
If the discrete Lagrangian Ld is (infinitesimally) G-invariant under
the diagonal group action on Q⇥Q,

Ld(gq0, gq1) = Ld(q0, q1)

then the discrete momentum map Jd : Q⇥Q! g⇤,
hJd (qk, qk+1) , ⇠i ⌘

⌦
D1Ld (qk, qk+1) , ⇠Q (qk)

↵

is preserved by the discrete flow.
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Lagrangian Variational Integrators

⌅ Main Advantages of Variational Integrators

•Variational Error Analysis2

Since the exact discrete Lagrangian generates the exact solution
of the Euler–Lagrange equation, the exact discrete flow map is
formally expressible in the setting of variational integrators.

• This is analogous to the situation for B-series methods, where the
exact flow can be expressed formally as a B-series.

• If a computable discrete Lagrangian Ld is of order r, i.e.,

Ld(q0, q1) = Lexact
d (q0, q1) +O(hr+1)

then the discrete Euler–Lagrange equations yield an order r accu-
rate symplectic integrator.

2J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica 10, 357-514, 2001.
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Constructing Discrete Lagrangians

⌅ Revisiting the Exact Discrete Lagrangian

• Consider an alternative expression for the exact discrete Lagrangian,

Lexact
d (q0, q1) ⌘ ext

q2C2([0,h],Q)
q(0)=q0,q(h)=q1

Z h

0
L(q(t), q̇(t))dt,

which is more amenable to discretization.

⌅ Ritz Discrete Lagrangians

• Replace the infinite-dimensional function space C2([0, h], Q) with
a finite-dimensional function space.

• Replace the integral with a numerical quadrature formula.

•Group-equivariant function spaces yield G-invariant discrete
Lagrangians, which inducemomentum-preserving integrators.
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Ritz Variational Integrators

⌅ Optimal Rates of Convergence

• A desirable property of a Ritz numerical method based on a finite-
dimensional space Fd ⇢ F , is that it should exhibit optimal
rates of convergence, which is to say that the numerical solu-
tion qd 2 Fd and the exact solution q 2 F satisfies,

kq � qdk  c inf
q̃2Fd

kq � q̃k.

• This means that the rate of convergence depends on the best ap-
proximation error of the finite-dimensional function space.
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Ritz Variational Integrators

⌅ Optimality of Ritz Variational Integrators
• Given a sequence of finite-dimensional function spaces C1 ⇢ C2 ⇢
. . . ⇢ C2([0, h], Q) ⌘ C1.

• For a correspondingly accurate sequence of quadrature formulas,

Li
d(q0, q1) ⌘ ext

q2Ci
h
Xsi

j=1
bijL(q(c

i
jh), q̇(c

i
jh)),

where L1d (q0, q1) = Lexact
d (q0, q1).

• Proving Li
d(q0, q1)! L1d (q0, q1), corresponds to �-convergence.

• For optimality, we require the bound,

Li
d(q0, q1) = L1d (q0, q1) + c inf

q̃2Ci
kq � q̃k,

where we need to relate the rate of �-convergence with the best
approximation properties of the family of approximation spaces.
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Ritz Variational Integrators

⌅ Theorem: Optimality of Ritz Variational Integrators3 4

• Under suitable technical hypotheses:
� Regularity of L in a closed and bounded neighboorhood;

� The quadrature rule is su�ciently accurate;

� The discrete and continuous trajectoriesminimize their actions;

the Ritz discrete Lagrangian has the same approximation proper-
ties as the best approximation error of the approximation space.

• The critical assumption is action minimization. For Lagrangians
L = q̇TMq̇�V (q), and su�ciently small h, this assumption holds.

• Shows that Ritz variational integrators are order optimal; spec-
tral variational integrators are geometrically convergent.

3J. Hall, ML, Spectral Variational Integrators, Numerische Mathematik, 130(4), 681-740, 2015.
4J. Hall, ML, Lie Group Spectral Variational Integrators, Found. Comput. Math., 17(1), 199-257, 2017.
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Ritz Variational Integrators

⌅ Numerical Results: Order Optimal Convergence
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• Order optimal convergence of the Kepler 2-body problem with ec-
centricity 0.6 over 100 steps of h = 2.0.
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Spectral Ritz Variational Integrators

⌅ Numerical Results: Geometric Convergence
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• Geometric convergence of the Kepler 2-body problem with eccen-
tricity 0.6 over 100 steps of h = 2.0.
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Spectral Ritz Variational Integrators

⌅ Numerical Experiments: Solar System Simulation

−6 −4 −2 0 2 4 6
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• Comparison of inner solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.

• h = 100 days, T = 27 years, 25 Chebyshev points per step.
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Spectral Ritz Variational Integrators

⌅ Numerical Experiments: Solar System Simulation
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• Comparison of outer solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.
Inner solar system was aggregated, and h = 1825 days.
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Spectral Lie Group Variational Integrators

⌅ Numerical Experiments: Free Rigid Body

Explicit Euler MATLAB ode45 Lie Group Variational Integrator

• The conserved quantities are the norm of body angular momentum,
and the energy. Trajectories lie on the intersection of the angular
momentum sphere and the energy ellipsoid.

• These figures illustrate the extent to the numerical methods pre-
serve the quadratic invariants.
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Multisymplectic Exact Discrete Lagrangian

⌅ What is the PDE analogue of a generating function?

• Recall the implicit characterization of a symplectic map in terms
of generating functions:

(
pk = �D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

(
pk = D1H

+
d (qk, pk+1)

qk+1 = D2H
+
d (qk, pk+1)

• Symplecticity follows as a trivial consequence of these equations,
together with d2 = 0, as the following calculation shows:

d2Ld(qk, qk+1) = d(D1Ld(qk, qk+1)dqk +D2Ld(qk, qk+1)dqk+1)
= d(�pkdqk + pk+1dqk+1)
= �dpk ^ dqk + dpk+1 ^ dqk+1
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Multisymplectic Exact Discrete Lagrangian

⌅ Analogy with the ODE case

•We consider a multisymplectic analogue of Jacobi’s solution:

Lexact
d (q0, q1) ⌘

Z h

0
L
�
q0,1(t), q̇0,1(t)

�
dt,

where q0,1(t) satisfies the Euler–Lagrange boundary-value problem.

• The boundary Lagrangian5 is given by

Lexact
d ('|@⌦) ⌘

Z

⌦
L(j1'̃)

where '̃ satisfies the boundary conditions '̃|@⌦ = '|@⌦, and '̃
satisfies the Euler–Lagrange equation in the interior of ⌦.

5C. Liao, J. Vankerschaver, ML, Generating Functionals and Lagrangian PDEs, J. Math. Phys., 54(8), 082901,
2013.
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Multisymplectic Exact Discrete Lagrangian

⌅ Multisymplectic Relation

• If one takes variations of the multisymplectic exact discrete
Lagrangian with respect to the boundary conditions, we obtain,

@'(x,t)L
exact
d ('|@⌦) = p?(x, t),

where (x, t) 2 @⌦, and p? is a codimension-1 di↵erential form,
that by Hodge duality can be viewed as the normal component (to
the boundary @⌦) of the multimomentum at the point (x, t).

• These equations, taken at every point on @⌦ constitute a multi-
symplectic relation, which is the PDE analogue of,(

pk = �D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

where the sign comes from the orientation of the boundary.
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Gauge Symmetries and Variational Discretizations

⌅ Theorem (Discrete Noether’s Theorem)
• If the discrete boundary Lagrangian is invariant with respect to the
lifted action of a gauge symmetry group on the space of boundary
data, then it satisfies a discrete multimomentum conservation law.

⌅ Theorem (Group-Invariant Ritz Discrete Lagrangians)
• Given a group-equivariant approximation space, and a Lagrangian
density that is invariant under the lifted group action, the associ-
ated Ritz discrete boundary Lagrangian is group-invariant.

⌅ Implications for Geometric Integration
•We need finite elements that take values in the space of Lorentzian
metrics that are group-equivariant.

• Two current approaches, geodesic finite elements and group-
equivariant interpolation on symmetric spaces.
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Interpolation of Lorentzian Metrics

• Let L denote the space of Lorentzian metric tensors:

L = {L 2 R4⇥4 | L = LT , detL 6= 0, signature(L) = (3, 1)}.
• Given L(i) 2 L at the vertices x(i) of a simplex ⌦, find a continuous
function IL : ⌦! L such that:

x(2)

x(4)

x(1)

x(3)
•

•

•
•

� IL(x(i)) = L(i) for each i.

� IL(x) 2 L for every x 2 ⌦.

� If Q 2 O(1, 3) and L(i) QL(i)QT ,
then IL(x) QIL(x)QT .

• Here, O(1, 3) = {Q 2 R4⇥4 | QJQT = J} is the indefinite
orthogonal group, where J = diag(�1, 1, 1, 1).
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Interpolation of Lorentzian Metrics

⌅ Componentwise interpolation

• Not signature-preserving, in general. For instance,

1

2

0

BB@

0 4 0 0
4 0 0 0
0 0 1 0
0 0 0 1

1

CCA

| {z }
2L since �=�4,1,1,4

+
1

2

0

BB@

2 �4 0 0
�4 2 0 0
0 0 1 0
0 0 0 1

1

CCA

| {z }
2L since �=�2,1,1,6

=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA

| {z }
/2L since �=1,1,1,1
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Interpolation of Lorentzian Metrics

⌅ Geodesic interpolation6 7

• A geodesic finite element is given by

IL(x) = argmin
L2L

Xm

i=1
�i(x) dist(L

(i), L)2,

where {�i}mi=1 are scalar-valued shape functions satisfying �i(x(j)) =
�ij. Also known as the weighted Riemannian mean.

L(2)

L(4) L(1)

L(3)

L•
• •

•
•

L
6O. Sander, Geodesic finite elements on simplicial grids, Int. J. Numer. Meth. Eng., 92(12), 999–1025, 2012.
7P. Grohs, Quasi-interpolation in Riemannian manifolds, IMA J. Numer. Anal., 33(3), 849–874, 2013.
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Interpolation of Lorentzian Metrics

⌅ Our approach8

• Idea: If L were a Lie group, one could use the exponential map
and perform all calculations on its Lie algebra, a linear space.

•

L

exp

• In reality, L is not a Lie group, it is a symmetric space. Nonethe-
less, a similar construction is available.

8E. Gawlik, ML, Interpolation on Symmetric Spaces via the Generalized Polar Decomposition, Found. Comput.
Math., 18(3), 757–788, 2018.
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Interpolation of Lorentzian Metrics

• Notice that L is di↵eomorphic to GL4(R)/O(1, 3): The map

'̄ : GL4(R)/O(1, 3)! L
[A] 7! AJAT ,

is a di↵eomorphism, where J = diag(�1, 1, 1, 1).
• Every coset [A] has a canonical representative Y by virtue of the
generalized polar decomposition:

A = Y Q, Y 2 SymJ(4), Q 2 O(1, 3),

where
SymJ(4) = {Y 2 GL4(R) | Y J = JY T}.

• log(Y ) lives in a linear space called a Lie triple system:

log(Y ) 2 symJ(4) = {P 2 R4⇥4 | PJ = JPT}.
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Interpolation of Lorentzian Metrics

⌅ Summary

GL4(R)

symJ(4) SymJ(4) GL4(R)/O(1, 3) L

log(Y ) Y [Y ] Y JY T

⇡ '

exp  

◆

'̄

• L is locally di↵eomorphic to the Lie triple system

symJ(4) = {P 2 R4⇥4 | PJ = JPT},
which is a linear space.

• Interpolation on a linear space is easy.
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Interpolation of Lorentzian Metrics

⌅ Interpolation Formula

x(2)

x(4)

x(1)

x(3)
•

•

•
•

• The resulting interpolation formula reads

IL(x) = J exp
⇣Xm

i=1
�i(x) log(JL

(i))
⌘
,

where J = diag(�1, 1, 1, 1), and {�i}mi=1 are scalar-valued shape

functions satisfying the Kronecker delta property �i(x
(j)) = �ij.
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Interpolation of Lorentzian Metrics

⌅ Signature preservation

• The interpolant IL is signature-preserving; that is,

IL(x) 2 L
for every x 2 ⌦.

⌅ Frame invariance

• Let Q 2 O(1, 3). If L̃(i) = QL(i)QT , i = 1, 2, . . . ,m, and if Q is
su�ciently close to the identity matrix, then

IL̃(x) = Q IL(x)QT

for every x 2 ⌦.
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Interpolation of Lorentzian Metrics

⌅ Symmetry under inversion

• If L̃(i) = (L(i))�1, i = 1, 2, . . . ,m, then

IL̃(x) = (IL(x))�1
for every x 2 ⌦.

⌅ Determinant averaging

• IfPm
i=1 �i(x) = 1 for every x 2 ⌦, then

det IL(x) =
mY

i=1

⇣
detL(i)

⌘�i(x)

for every x 2 ⌦.
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Interpolation of Lorentzian Metrics

⌅ Numerical example (Linear Interpolation)

• Interpolating the Schwarzschild metric, which is a spherically sym-
metric, vacuum solution of the Einstein equations.

�
✓
1� 1

r

◆
dt2 +

✓
1� 1

r

◆�1
dr2 + r2

⇣
d✓2 + sin2 ✓ d'2

⌘

Linear shape functions {�i}i
N L2-error Order H1-error Order

2 3.3 · 10�3 2.8 · 10�2
4 8.4 · 10�4 1.975 1.4 · 10�2 0.998
8 2.1 · 10�4 1.994 7.1 · 10�3 0.999
16 5.3 · 10�5 1.998 3.6 · 10�3 1.000
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Interpolation of Lorentzian Metrics

⌅ Numerical example (Quadratic Interpolation)

• Interpolating the Schwarzschild metric, which is a spherically sym-
metric, vacuum solution of the Einstein equations.

�
✓
1� 1

r

◆
dt2 +

✓
1� 1

r

◆�1
dr2 + r2

⇣
d✓2 + sin2 ✓ d'2

⌘

Quadratic shape functions {�i}i
N L2-error Order H1-error Order

2 1.7 · 10�4 2.5 · 10�3
4 2.2 · 10�5 3.001 6.2 · 10�4 1.993
8 2.7 · 10�6 3.000 1.6 · 10�4 1.998
16 3.4 · 10�7 3.000 3.9 · 10�5 1.999
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Interpolation of Lorentzian Metrics

⌅ Relationship with other methods

• The interpolant we constructed has the form,

IL(x) = J exp
⇣Xm

i=1
�i(x) log(JL

(i))
⌘
.

• An alternative interpolant is defined implicitly via

IL(x) = IL(x) exp
⇣Xm

i=1
�i(x) log

⇣
IL(x)�1L(i)

⌘⌘
.

This interpolant is equivalent to the geodesic interpolant.

• Replacing J = diag(�1, 1, 1, 1) with the identity matrix, one recov-
ers the weighted Log-Euclidean mean9 of symmetric positive-
definite matrices,

IL(x) = exp
⇣Xm

i=1
�i(x) log(L

(i))
⌘
.

9V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on
symmetric positive-definite matrices. SIAM. J. Matrix Anal. & Appl., 29(1), 328–347, 2007.



46

Abstraction to Symmetric Spaces

⌅ Lorentzian metrics as a Symmetric Space

• S – smooth manifold L (Lorentzian metrics)

• ⌘ – distinguished element of S J = diag(�1, 1, 1, 1)
• G – Lie group that acts transitively on S GL4(R)
• � : G! G – involutive automorphism �(A) = JA�TJ
• G� = {g 2 G | �(g) = g} O(1, 3)

• G� = {g 2 G | �(g) = g�1} SymJ(4)
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Abstraction to Symmetric Spaces

⌅ Key Assumption

• Isotropy subgroup of ⌘ coincides with the fixed set G�, i.e.

g · ⌘ = ⌘ () �(g) = g.

AJAT = J () JA�TJ = A

• Then S is di↵eomorphic to G/G� (a symmetric space) and
every [g] 2 G/G� has a canonical representative p 2 G� by the
generalized polar decomposition g = pk, p 2 G�, k 2 G�.

• This is related to the Cartan decomposition of the Lie algebra
g = p� k, where k is the Lie algebra of the subgroup G�, and

p = {P 2 g | d�(P ) = �P} ⇢ g= {P 2 R4⇥4 | �JPTJ = �P},
which is a Lie triple system – it is closed under the double
commutator [·, [·, ·]], but not under [·, ·].
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Abstraction to Symmetric Spaces

k G�

g = p� k G

p G� G/G� S
GL4(R)

symJ(4) SymJ(4) GL4(R)/O(1, 3) L
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Abstraction to Symmetric Spaces

⌅ Summary

• S is locally di↵eomorphic to the Lie triple system p, which is a
linear space, and interpolation on a linear space is easy.

• The resulting formula for interpolating {u(i)}mi=1 ⇢ S reads

Iu(x) = F
⇣Xm

i=1
�i(x)F

�1(u(i))
⌘
,

where �i : ⌦ ! R, i = 1, 2, . . . ,m, are scalar-valued shape func-
tions satisfying �i(x

(j)) = �ij, and F : p! S , P 7! exp(P ) · ⌘.
• The resulting interpolant is G�-equivariant.

• Recovers interpolation formulas on the Grassmannian10.

10D. Amsallem and C. Farhat. Interpolation method for adapting reduced-order models and application to
aeroelasticity. AIAA Journal, 46(7), 1803–1813, 2008.
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Summary

• Gauge field theories exhibit gauge symmetries that impose Cauchy
initial value constraints, and are also underdetermined.

• These result in degenerate field theories that can be described using
multi-Dirac mechanics and multi-Dirac structures.

• Described a systematic framework for constructing and analyz-
ing Ritz variational integrators, and the extension to Hamiltonian
PDEs.

•Multimomentum conserving variational integrators can be con-
structed from group-equivariant finite element spaces.

• These spaces can be constructed e�ciently for finite elements tak-
ing values in symmetric spaces, in particular, Lorentzian metrics,
by using a generalized polar decomposition.
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⌅ New Monograph
• Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds,
Taeyoung Lee, ML, N. Harris McClamroch, Interactions of Mechanics and Mathe-
matics, Springer, XXVII+539 pages, ISBN: 978-3-319-56951-2.
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Abstract

Variational integrators are geometric structure-preserving numerical methods that preserve the symplectic
structure, satisfy a discrete Noether’s theorem, and exhibit exhibit excellent long-time energy stability properties.
An exact discrete Lagrangian arises from Jacobi’s solution of the Hamilton-Jacobi equation, and it generates
the exact flow of a Lagrangian system. By approximating the exact discrete Lagrangian using an appropriate
choice of interpolation space and quadrature rule, we obtain a systematic approach for constructing variational
integrators. The convergence rates of such variational integrators are related to the best approximation properties
of the interpolation space. Many gauge field theories can be formulated variationally using a multisymplectic
Lagrangian formulation, and we will present a characterization of the exact generating functionals that generate
the multisymplectic relation. By discretizing these using group-equivariant spacetime finite element spaces, we
obtain methods that exhibit a discrete multimomentum conservation law. We will then briefly describe an
approach for constructing group-equivariant interpolation spaces that take values in the space of Lorentzian
metrics that can be efficiently computed using a generalized polar decomposition. The goal is to eventually
apply this to the construction of variational discretizations of general relativity, which is a second-order gauge
field theory whose configuration manifold is the space of Lorentzian metrics.

1 Lecture notes

Geometric structure-preserving variations.
Context: Gravitational waves detection, enabled by computational advancements, specifically numerical relativ-

ity in order to solve the inverse problem.
Einstein equations can be written in Lagrangian formulation, it’s a 2nd order gauge field theory.
Gauge symmetry - local continuous transformation, a consequence is that the E-L equations are underdetermined.

Therefore, constraints are required.
The E-L equations are overdetermined, since initial conditions cannot be chosen freely.
Example: Electromagnetism. Box operator is the wave operator. The transformation is an example of a gauge

symmetry, and there are constraints on the associated initial data.
Gauges must be chosen carefully depending on the problem being solved. This is an issue in computations,

because in computations we don’t normally know what the solution will look like, and in fact a global gauge may
not be the best choice.

One consequence of symmetry is conserved quantities. In gauge theory, every local symmetry has a Noether
current associated with it. Integrating this current, obtain the Noether charge; in general relativity the Noether
charge is the stress-energy tensor.

Since Noether’s second theorem implies only 6 out of 10 components of the Einstein equation, usually people
solve for 6 and use the remaining 4 components as error indicators.

There is no canonical choice of a global slice of space-time, and this is an issue in the required discretization
in numerical approaches. Thus, we consider simplicial spacetime meshes. The discretization should respect the
symmetry in order for the Noether discrete theorem to apply, therefore we study gauge-invariant discretization.

Continuous Hamilton-Pontryagin principle - relax the condition of q̇ = v. Obtain the implicit E-L equations.
If, for example, the Lagrangian is not hyper-regular, the equation for p becomes a primary constraint condition.
Relaxing the relation between time derivatives of spatial coordinates and the velocities, yields the implicit E-L

equations.
When extracting information from numerical simulations, since they can be viewed as exact solutions of a

modified equation set, the information extracted has some notion of structural stability.
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One way to construct such a symplectic integrator is to approximate the path between two specified points,
and allow the computed points in the path to vary. In order to approximate the path, a discrete Lagrangian is
constructed.

Discrete E-L equations - two-step method. The discrete Lagrangian is essentially a Type I generating function.
Advantaged of constructing such variational integrators:
- Respects symmetries.
- Variational error analysis
Numerical experiments - On the left, the real system, on the right, the computed approximation.
Another example - the free rigid body. Comparing numerical methods, the Lie Group variational integrator

keeps the constraints.

Note: The geodesic interpolation of Lorentzian metrics is very computationally expensive. We present a new
approach using group diffeomorphisms.
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