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Main Ham PDE example #1: gKdV

ut + (uxx + uk)x = 0, (t, x) 2 R⇥R (gKdV)

• Hamiltonian structure:

E (u) =
Z

R

1

2
u2x �

1

k + 1
uk+1dx , J = ∂x , u 2 H1

• Conserved momentum  ! translation invariance in x :

P(u) =
1

2

Z

R
u2dx

• Scaling invariance: solu u(t, x) �! solu

ul(t, x) = l
2

k�1 u(l3t,lx), P(ul) = l
5�k
k�1P(u)



Traveling waves of (gKdV)

• Relative equilibrium: traveling waves (TW) to the right

u(t, x) = Qc(x � ct), Qc(x) = c
1

k�1Q(
p
cx) c > 0

Q(x) =
⇣k + 1

2
sech2

�k � 1

2
x
�⌘ 1

k�1 2 H1

satisfying
Qxx �Q +Qk = 0, Q(±•) = 0

• TWs  ! critical pts of H(u) = E (u) + cP(u)

• Due to scaling invariance, fix c = 1.



(gKdV) in moving frame

Let
u(t, x) = U(t, x � t)

(gKdV) =)

Ut = Ux � (Uxx + Uk)x = JH 0(U). (gKdV-M)

• Hamiltonian H(U) = E (U) + P(U), symplectic structure J = ∂x

• Q an equilibrium of (gKdV-M)

* H1 � M = {Q(·+ y) | y 2 R} ⇠ R: equilibria of (gKdV-M)

• Linearization at Q for stability of M:

Ut = JH 00(Q)u, Morse Index n�(H 00(Q)) = 1 (L-gKdV-M)

* GSS not directly applicable for J�1 = ∂�1x unbounded on H1



Stability of traveling waves

• k < 5 (subcritical): stable

Orbital stability. (Benjamine, Bona&Souganidis&Strauss, Weinstein)

Asymptotic stability in exp. weighted space (Pego&Weinstein,
Mizumachi), weakly in H1 (Martel&Merle)

• k = 5 (critical): unstable, starting near M, 9 globally nearby solu,
blow-up solu, ... (Martel&Merle, Martel&Merle&Nakanishi&Raphaël)

• k > 5 (supercritical): unstable

Orbitally unstable. (Bona&Souganidis&Strauss)

9 solu decaying to M (Combet)

• Goal: local nonlinear dynamics near M for k > 5?



Main Ham PDE example #2: GP in 3-dim

• Gross-Pitaevskii (GP) equation:

iut + Du + (1� |u|2)u = 0, u = u1 + iu2 ⇠
✓
u1
u2

◆
, (t, x) 2 R⇥R3

• Hamiltonian structure:

E (u) =
1

2

Z

R3
|ru|2dx + 1

4

Z

R3
(1� |u|2)2dx , J = �i ⇠

✓
0 1
�1 0

◆

• Phase ‘space’/energy space

X0 = {u 2 H1
loc(R

3) : E (u) < •, i.e. ru, 1� |u|2 2 L2(R3)}.

* X0 not a vector space, tangent space TuX0 ⇡ X1 , H1 ⇥ Ḣ1 for ‘nice’ u

* Global existence: Gerard 06.



Traveling waves of GP

• (Formal) conservation of the momentum

P(u) =
1

2

Z

R3
hiru, u � 1idx = (P1,P2,P3)(u)

* Formal: P is not well-defined on energy space X0.

• Relative equilibrium: traveling waves (TW)

u(t, x) = Uc(x � ct~e1), c 2 R

*TWs  ! critical pts of H(u) = E (u)� cP1(u)

• Existence of traveling waves u(t, x) = Uc(x � ct~e1), Uc = uc + ivc :

Formal: Jones, Putterman, Roberts 80s, c 2 (0,
p
2)

Maris 13: rigorous existence, c 2 (0,
p
2)



Stability

• Traveling wave manifold M = {Uc(·y ) | y 2 R3}

• For stability of M: linearizing (GP) at Uc in moving frame:

ut = JLcu, u = (u1, u2)
T 2 X1 = TUcX0 = H1 ⇥ Ḣ1 (LGP)

J =

✓
0 1
�1 0

◆
Lc =

✓
�D� 1+ 3u2c + v2c �c∂x1 + 2ucvc

c∂x1 + 2ucvc �D� 1+ u2c + 3v2c

◆

* L 2 L(X1,X ⇤1 ), L
⇤ = L, n� (L) = 1 (due to the constrained variation)

• J⇤ = �J, but J�1 = �J : X1 ! X ⇤1 is unbounded since Ḣ1  H�1.



General linear Hamiltonian PDEs

• Consider:
ut = JLu, u 2 X (LH)

* X : real Hilbert space

* L : X ! X ⇤, bounded, R(L) ⇢ X ⇤ closed, L⇤ = L, i.e. hLu, vi = hLv , ui

* J : X ⇤ ! X , anti-self-dual, i.e. J⇤ = �J

Main assumption: Morse index n�(L) < •

• RK1: J may not be invertible/Fredholm

• RK2: Minor assumptions needed if dim ker L = • or R(L) not closed.

• RK3: non-closed R(L) occurs if L does not have positive lower bound in
the ‘positive subspace’



Other examples: Euler in 2-d

Euler equa. on a smooth bounded W ⇢ R2 in vorticity formulation:

wt + v ·rw = 0, w = r⇥ v = �Dy, where v = r?y (E)

• A steady flow if for some F

�Dy0 = F (y0) in W, y0 = 0 on ∂W

• Assume F 0(y0) > 0. Linearize (E) at w0 =)

wt = JLw , (E1)

L =
1

F 0 (y0)
� (�D)�1 2 L(L2, L2), L⇤ = L, n�(L) < •

• J = F 0 (y0) v0 ·r : L2 ! L2, J�1 not bounded, dim ker J = •



Other examples: BBM, generalized Bullough–Dodd, ...

• Linearizating the following Ham. PDEs at traveling wave U(x � ct) =)

ut = JLu, L⇤ = L, n�(L) < •, J⇤ = �J

ut + ux + f (u)x � utxx = 0, x 2 R, f (0) = f 0(0) = 0 (BBM)

L = �∂xx + (1� c�1)� c�1f 0(U) 2 L(H1,H�1)

J = c∂x (1� ∂xx )
�1 : H�1 ! H1, J�1 not bounded , 0 2 sc(J)

utx = au � f (u), f (0) = f 0(0) = 0, a > 0, x 2 R (gBD)

L = �c∂xx + a� f 0(U) 2 L(H1,H�1),

J = ∂�1x : H�1 ! H1, J�1 not bounded , 0 2 sc(J)

• Other examples: good Boussinesq type equa., NLS, Klein-Gordon ...



Index notations

S ⇢ X : a subspace

n0(L|S ): # of nonpositive dim of hLu, ui restricted to S

Subspace of generalized e-vectors

El = {u 2 X | 9k > 0, s. t. (JL� l)ku = 0}

kr = Âl2s(JL), l>0 dim(El)

kc = Âl2s(JL), Rel>0, Iml>0 dim(El)

k00 = n0(L|E0/ ker L)

k0i = Âiµ2s(JL), µ>0 n
0(L|Eiµ).



Index formula

Theorem (Lin-Z) Eigenvalues of JL are symmetric to both real and
imaginary axis,

kr + 2kc + 2k0i + k00 = n� (L) .

• 9 counter examples if k0 replaced by k�

* There may be eigenvalues embedded in continuous spectrum

* More details on JL, hL·, ·i restricted on Eiµ, generalized Krein signature

* Conceptually, hL·, ·i � d > 0 on the ‘subspace’ of continuous spectrum



Remarks on k00

kr + 2kc + 2k0i + k00 = n� (L) .

Corollary:

1 If k00 = n� (L), then (LH) is spectrally stable.

2 If n� (L)� k00 is odd, then JL has a positive e-value �! instability.

* Often symmetries contribute to ker L

�! corresponding conserved quantities help to compute k00 .

�! Grillakis-Shatah-Strauss (GSS) type stability criterion

• Application to (gKdV) �! recover spectral stability/instability



(GP) revisited

• Traveling wave Uc(x � ct~e1) of (GP) in 3-d:

iut + Du + (1� |u|2)u = 0, u = u1 + iu2 ⇠
✓
u1
u2

◆
, (t, x) 2 R⇥R3

* Linearized equation ut = JLu, J = �i ⇠
✓

0 1
�1 0

◆

• Jones, Putterman, Roberts 80s: conjectured a (GSS) type criterion:

linearly stable if dP1(Uc )
dc > 0 (lower branch)

linearly unstable if dP1(Uc )
dc < 0 (upper branch)

P1(u) =
1

2

Z

R3
hi∂x1u, u � 1idx

* P1(u) can be extended from H1 to the energy space X0

• Grillakis-Shatah-Strauss 87, 91, etc. do not apply since

J�1 : X1 = H1 ⇥ Ḣ1 ! X ⇤1 is unbounded



Linear stability criterion of (GP)

Theorem (Lin-Wang-Z) Suppose 9 a family of TW Uc smooth in c
where E � cP1 has Morse index 1 (, n�(L) = 1), then

1 spectrally stable if dP1(Uc )
dc �0 (, k00 = 1, lower branch)

2 linearly unstable if dP1(Uc )
dc < 0 (upper branch), under a

non-degeneracy condition

ker(E 00 � cP 001 )(Uc) = span{∂x1Uc , ∂x2Uc , ∂x3Uc , } (N-deg)

TWs found by Maris 13, etc. has Morse index 1

extension to other dim and general nonlinearity e.g. cubic-quintic NLS

existence of slow traveling waves and their instabilities

transversal instabilities of TW of 2-dim (GP)

nonlinear orbit stability/instability

RK: Compare with (GSS) criterion



Other references on index formula

dim-X < •: Mackay (1986) ...

dim-X  •, mostly assuming J invertible and hL·, ·i non-degenerate
restricted to (JL)�1(ker(L))/ ker L:
Grillakis, Kapitula, Kevrekidis, Sandstede, Pelinovsky, Chugunova,
Stefanov, Bronski, Johnson, Haragus, Pego, Kollar, Gurski, ...

KDV type equa.: some work by Kapitula-Stefnov, Pelinovsky,
(2013-2014)

...

RK. 1. Any anti-self-dual J allowed, even with dim ker J = • or
0 2 sc(J).

RK. 2. some more detailed results seem (?) to be new even in the finite
dimensional case.



Exponential trichotomy (ET) of etJL

Theorem (Lin-Z) X is decomposed into closed subspaces

X = Eu � E c � E s .

etJL(Eu,s,c) = Eu,s,c , 8t
9 M > 0, L > 0, such that

|etJL|Es |  Me�Lt , 8 t � 0,

|etJL|Eu |  MeLt , 8 t  0.

and
|etJL|Ec |  M(1+ |t|K ), 8 t 2 R.

where
K  1+ 2n�(L)

RK. E c = {u | hLu, vi = 0, 8 v 2 E s � Eu}.



Remarks

(ET) does not follow directly from the spectral gap of s (JL) even
though sess (JL) ⇢ iR (spectral mapping?) or resolvent estimates

Ingredients of the proof:
Invariance of hL·, ·i under etJL

n�(L) < • �! Pontryagin invariant subspace theorem

Carefully decompose JL blockwisely.

Exponential dichotomy (ET) on X can be extended to D
�
(JL)k) ⇢ X

(ET) allows one to construct local invariant manifolds for the
nonlinear problem.

• Other results: Upper triangular form of JL, structural stability of JL



Local invariant manifolds of semi linear equa.

• Consider

ut = Au + F (u), u 2 Y , Y : Banach space (NL)

Theorem (See e.g. Chow-Lu) Suppose

etA has exponential dichtomy on Y = E+ � E� with a� < a+ s. t.

etA(E±) ⇢ E±,
���etA|E±

���  Cea±t , ⌥t � 0

F 2 C k(Y ,Y ), F (0) = 0, and F 0(0) = 0.

Then 8b� < b+, b± 2 (a�, a+), 9 (possibly not uniquely) smooth local
invariant manifolds M± s. t.

0 2 M±, T0M
± = E±

If u(0) 2 M±, then u(t) 2 M±, for t in some (t�, t+) 3 0, and u(t)
can exit M± only through ∂M±

Before exiting M±, |u(t)|  Ceb±t for ⌥t � 0.



Linearized analysis of (gKdV) at Q

• H1 � M = {Q(·+ y) | y 2 R} ⇠ R: traveling wave manifold

• Exp. trichotomy splitting for linearized (gKdV) at Q: ut = JLu

H1 = X+ � X� � X c , X c = X e � XT , XT = span{∂xQ} = TQM

Moreover

dimX± = span{V±}; JLV± = ±lV±, l > 0, LXe � d > 0

* Translation invariance �! exp. trichotomy splitting at Uc(·+ y):

H1 = X+
y � X�y � X c

y , X c
y = X e

y � XT
y ,

X±,c,T ,e
y = {u(·+ y) | u 2 X±,c,T ,e}, y 2 R

associated with projections P±,e,T
y .



Local dynamics near traveling wave Q of (gKdV)

Theorem

(Jin-Lin-Z) 9! smooth locally invariant (under (gKdV)) manifolds
W u,W s ,W c ,W cs ,W cu � M, s. t. at 8Q(·+ y) 2 M,

TQ(·+y )W
u = X+

y � TQ(·+y )M, TQ(·+y )W
s = X�y � TQ(·+y )M

TQ(·+y )W
cu = X+

y � X c
y , TQ(·+y )W

cs = X�y � X c
y , TQ(·+y )W

c = X c
y

M = W u \W s , W u ⇢ W cu, W s ⇢ W cs , W c = W cu \W cs

• W u,s,c,cu,cs are invariant under x-translation and rescaling, W u,s ⇢ C•

• M is orbitally stable on W c

• As usual, invariant manifolds �! organized local dynamics near M

* Local invariance: orbits starting on W u,s,cs,cu,c can leave them only
through their boundaries



Construction: stable/unstable manifolds

• First, stable/unstable manifolds of Q, i.e. for y = 0.

H1 = X+�X��X c �! V = a+V++ a�V�+ v c , v c 2 X c = XT �X e

Rewrite (gKdV) in terms of (a±,V c):
(

∂ta± = ±la± + F±(a±, v c)

∂tv c = JL0v
e + ∂xF c(a±, v c) + F c

1 (a
±, v c)

* F±(a±, v c) 2 R: quadratic terms
* F c(a±, v c),F c

1 (a
±, v c) 2 H1: quadratic terms with nice spatial decay

• Lyapunov-Perron approach for W s (W u similar)
8
><

>:

a�(t) = e�lta�(0) +
R t
0 e�l(t�s)F�(a±, v c)(s)ds

a+(t) =
R +•
t el(t�s)F+(a±, v c)(s)ds

v c(t) =
R +•
t e(t�s)JL0

�
∂xF c(a±, v c)(s) + F c

1 (a
±, v c)(s)

�
ds

• ∂xF c 2 L2 loses regularity



Smoothing estimates (Kenig&Ponce&Vega)

Lemma

Let W (t) be the solu group of ut + uxxx = 0.

|∂xW (t)u0|L•
x L2t

+ |∂1/4
x W (t)u0|L4t L•

x
 C |u0|L2 .

|W (t)u0|L2xL•
[0,T ]
 Cs,r(1+ T )r|u0|Hs , s > 3/4, r > 3/4, T  •

|∂x
Z t

0
W (t � s)g(s)ds |L•

[0,T ]L
2
x
 C |g |L1xL2[0,T ]

, T  •

|∂xx
Z t

0
W (t � s)g(s)ds |L•

x L2[0,T ]
 C |g |L1xL2[0,T ]

, T  •

Smoothing estimates + decay of ∂xF c in x + Lyapunov-Perron
framework =) stable/unstable mani. W u,s

0 of Q;

Stable/unstable mani. W u,s
y of Q(·+ y) via translation;

W u,s = [y2RW
u,s
y .

Construction can be done in Hk =) W u,s ⇢ Hk due to uniqueness



Center manifold: global construction

One can construct local invariant mani W cs,cu,c
y of Q(·+ y) similarly

Lack of uniqueness of W cs,cu,c
y �! the local invariant mani. W cu,cs,c

of the whole M can not be obtained by patching W cs,cu,c
y �!

W cs,cu,c should be constructed near but globally along M

• Recall the natural local coord. near M:

V = F(y , a±, v e) = (Q + a±V± + v e)(·+ y), y , a± 2 R, v e 2 X e

(gKdV-M) =)
8
><

>:

∂ty = ATeV
e + eFT (y , a±, v e)

∂ta± = ±la± + eF±(y , a±, v e)

∂tv e + ∂tyPe
y∂xv e = Aev

e + ∂x eF e(y , a±, v e) + eF e
1 (y , a

±, v e)

• ∂xv e loses regularity and does not have enough decay in x to be handled
by smoothing estimates



Center manifold: a bundle coordinates near M

• Revisit ∂tyPe
y∂xv e :

F(y , a±, v e) = (Q + a±V± + v e)(·+ y) : R3 ⇥ X e ! H1

is homeomorphic, but not smooth in y :

∂yF(y , a±, v e) = (∂xQ + a±∂xv
± + ∂xv

e)(·+ y)

L2 3 ∂xv
e /2H1

• Resolution for (NKG) by Nakanishi&Schlag 12: nonlinear ‘quasi-distance’

• Our approach: a bundle coordinate system (Bates&Lu&Z, Jin&Lin&Z)

Y(y , a±,Z e) = (Q + a±V±)(·+ y) + Z e ,

Z e 2 X e
y = {v 2 H1 | v(·� y) 2 X e}, but do not parametrize Z e by

v e = Z e(·� t) 2 X e



Construction of the center manifold

• Recall PT ,±,e
y are smooth in y =)

X̃ e = {(y , v) | v 2 X e
y } is a smooth bundle over M ⇠ R

and
Y : X̃ e ⇥R2 ! H1 is smooth!

Smoothing estimates (with weak exp. growth) + Lyapunov-Perron
framework �! W cu,cs,c of M

hLyZ e ,Z ei � a|Z e |2H1 + conservation of H = (E + P) =) orbitally
stability of M inside W c



Local dynamics of (GP)

iut + Du + (1� |u|2)u = 0, x 2 R3, u(t,•) = 1 (GP)

• (Jin-Lin-Z) Invariant manifolds of traveling wave manifold M

* Energy X0 space non-flat: use a coordinate system due to P. Gerard

* Local bundle coordinates near M used to avoid loss of regularity

* Stritchartz space-time Lpt,locL
q
x estimates (with weak exp. growth)

RK: Regularity issue occurs due to spatial translation (also Lorenz, Galileo,
etc.), but not phase symmetry

• The above approach applicable to a large class of Hamiltonian PDEs

• As usual, invariant manifolds �! organized local dynamics near M



Local dynamics and invariant manifolds of traveling wave manifolds of
Hamiltonian PDEs - Talk by Chongchun Zeng

Blackboard + Lecture Notes (Ori S. Katz)

October 15, 2018

Abstract

Some Hamiltonian PDEs which are invariant under spatial translations possess traveling wave solutions which
form finite dimensional invariant manifolds parametrized by their spatial locations. Extensive studies have been
carried out for their stability analysis. In this talks we shall focus on local dynamics and invariant manifolds of
the traveling wave manifolds for the Gross-Pitaevskii equation in $R^3$ and the gKdV equation as our main
PDE models, while our approach works for a general class of problems. Noting that the symplectic operators of
some of these models happen to be unbounded in the energy space, violating a commonly assumed assumption
for the study of the linearized systems at these traveling waves, we could carry out linearized analysis in a general
framework we developed recently. Nonlinearly our main results are the existence of local invariant manifolds of
unstable traveling waving manifolds and the implications on the local dynamics. In addition to applying certain
space-time estimates, we use a bundle coordinate system to handle an issue of a seemingly regularity loss caused
by the spatial translation parametrization.

1 Blackboard + lecture notes

general KdV equation - Hamiltonian structure
Question - we want to study stability of traveling waves - can be described as non-isolated steady states in the

co-moving space. Obtain a curve of traveling wave states. What about the stability?
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The problem with stability analysis is that the inverse of J is not bounded on the energy space. J�1 corresponds
to the symplectic form, so this is not an unreasonable assumption.

Another example: Gross-Pitaevskii (GP) equation on R3. The phase space is not a linear space, the constraint
is not linear. Gerard showed the problem is nevertheless well-posed.

Traveling waves of GP: traveling waves must have velocity c 2
�
0,
p
2
�
. Maris ’13 - proved rigorous existence.

Stability: We are talking about the 3D manifold of traveling waves M , not a single traveling wave. Because of
the translational invariance, we know L have 3 kernel directions, there may be more.

General linear Hamiltonian PDEs: We consider the case of the linear Hamiltonian being a symmetric quadratic
form. The main assumption, n� (L) < 1, is often true but not always.

What is the general framework that covers these problems?
To present the main results, we need to introduce some notations.
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Can we get information about this distribution from the energy functional L? We need to do some counting.
Count the total dimension of all the eigenvalues in the first point, and make sure it is finite, and call it kc. Count
all the dimensions of the point on the real axis kr. Count the non-positive eigenvalues on the imaginary axis
k  0. How to define the eigenspace on the embedded (shaded) part of the imaginary axis? Finally, there is the
generalized kernel (at the origin) - k0, and count the total non-positive dimensions of the energy functional. Because
of symmetry, only need to calculate for 4 points and multiply by their multiplicity. The sum is the Morse index
n� (L).

Because of the multiplicity, n� � k0
0 odd or even signifies existence of kr, signifying stability/non-stability.

Exponential trichotomy (ET) of etJL: Is the system really stable on the eigenspace on the imaginary axis? Can
obtain the stable subspace from the spectral theory ES , the unstable subspace EU and the center subspace EC .

Sc
an

ne
d 

w
ith

 C
am

Sc
an

ne
r

The stable and unstable subspaces are finite-dimensional invariant subspaces under the linear solution flow, so
the space can be reduced by them. They are isotropic subspaces.

However, the central direction is more complicated. On the center subspace, the linear subspace has no growth.
This is the best upper bound one can get.

Linearized analysis of (gKdV) at Q:

2
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Expect the dynamics around the W c manifold to be stable.
(Near a saddle - there is a “stable manifold on ice”.)
Near the stable and unstable manifold there is a foliation:
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Center manifold: a bundle coordinates near M : The problem is that in these very natural coordinates, the
transformation is a local homeomorphism, not a local diffeomorphism.
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