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Motivation

x 0 = Jr(H(x) + #G (t, x))

for # = 0 we have:

L NHIM, parameterised by I , q

Stable and unstable manifold
intersect transversally

Dynamics restricted to an
energy level

Question: Can we di↵use in I over [0, 1] for # > 0?
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Motivation

x 0 = Jr(H(x) + #G (t, x))

Our goals:

Explicit range of # 2 (0, e]

Estimates on di↵usion time

Symbolic dynamics

Hausdor↵ dimension of the
set of di↵using orbits

Method suitable for
computer assisted proofs
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Our goals:

Explicit range of # 2 (0, e]

Estimates on di↵usion time

Symbolic dynamics

Hausdor↵ dimension of the
set of di↵using orbits

Method suitable for
computer assisted proofs

Theorem

In the Neptune-Triton PER3BP

µ = 0.000208923,

for any # 2 (0, 0.000016] we have
di↵usion over energies of size 1

410
�8.
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Motivating example

f : R2 ! R2

———————————————–

g : R2 ⇥ S1 ! R2 ⇥ S1

g(x , y , q) = (f (x , y), q + w)

———————————————–

F# : R2 ⇥ S1 ⇥ R ! R2 ⇥ S1 ⇥ R

F#=0(x , y , q, I ) = (f (x , y), q + w, I )
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Main result

F# : R2 ⇥ S1 ⇥ R ! R2 ⇥ S1 ⇥ R

F#=0(x , y , q, I ) = (f (x , y), q + w, I )

Theorem

If any horizontal disc ‘returns’ to U and for
points x that return

pIF
n
# (x) > pI x + c#

then for any # > 0 9x̃ and 9N for which

pI x̃ = 0,

pIF
N
# (x̃) > 1.
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Main result

F# : R2 ⇥ S1 ⇥ R ! R2 ⇥ S1 ⇥ R

F#=0(x , y , q, I ) = (f (x , y), q + w, I )

Theorem

Horizontal discs can ‘travel’ between Ui

and Uj for i , j 2 {1, 2}.
For points that travel from U1 to U1

pIF
n
# (x) > pI x + c#.

For points that travel from U2 to U2

pIF
n
# (x) < pI x � c#.

Then we have symbolic dynamics in I .
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Tools

Verification of assumptions

Definition

Covering relation, N0
F

=) N1

One dimensional unstable
coordinate:

Theorem ([1])

N0
F

=) N1
F

=) · · · F
=) Nk

Then there exists a trajectory
that passes through the sets.

[1] M. Gidea, P. Zgliczyński, “Covering relations for multidimensional dynamical systems” JDE
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Verification of assumptions

Cone conditions

a > 0. Coordinates (x , p) 2 R ⇥ R3.
Cone:

C (x⇤, p⇤) = {(x , p) : |x⇤ � x | � akp⇤ �pk}

Definition

F satisfies cone condition i↵

F (C (q)) ⇢ C (F (q))
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Verification of assumptions

Theorem ([2])

Cone conditions and N0
F

=) N1
F

=) · · · F
=) Nk imply

[2] P. Zgliczyński, “Covering relations, cone conditions and the stable manifold theorem”, JDE
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[2] P. Zgliczyński, “Covering relations, cone conditions and the stable manifold theorem”, JDE

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 10 / 17



Verification of assumptions

Theorem ([2])

Cone conditions and N0
F

=) N1
F

=) · · · F
=) Nk imply
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[2] P. Zgliczyński, “Covering relations, cone conditions and the stable manifold theorem”, JDE

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 10 / 17



Verification of assumptions

Theorem ([2])

Cone conditions and N0
F

=) N1
F

=) · · · F
=) Nk imply
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Connecting Sequence

S = [�1, 1]⇥ [�1, 1]⇥ R ⇥ [s1, s2]
D = [�1, 1]⇥ [�1, 1]⇥ [0, 1]⇥ [s1, s2]

Assume that we can enclose any horizontal disc in D by a set N0

Assume that we have a sequence of coverings that lands back to S
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Restricted three body problem

Equations - elliptic case

# eccentricity
q true anomaly (if # = 0, q = t)

H# (X ,Y ,PX ,PY , q) =
(PX + Y )2 + (PY � X )2

2
� W (X ,Y )

1+ # cos(q)
.

dX
dq = ∂H#

∂PX
, dPX

dq = � ∂H#
∂X ,

dY
dq = ∂H#

∂PY
, dPY

dq = � ∂H#
∂Y .

[3] V. G. Szebehely, “Theory of Orbits, The R3BP”, Academic Press 1967
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Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have
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F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton system: µ = 0.000208923,
For # = 0 we have

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

-0.05

-0.025

 0

 0.025

 0.05

-1.02 -1 -0.98 -0.96 -0.94

Y

X

F# is the map from {Y = 0} to {Y = 0}. Sets N0, . . . ,Nk on {Y = 0}.
N0 ) N1 ) . . . ) N13 ) N0 N0 ) N1 ) . . . ) N15 ) N0

(X ,Y ,PX ,PY , q)

(X ,PX ,PY , q)

(X ,PX ,H, q)

(x , y , I , q) 2 R ⇥ R ⇥ [0, I ⇤]⇥ S1

MSRI Di↵usion - computer assisted proofs 9 Oct 2018 13 / 17



Restricted three body problem

Neptune-Triton: choice of q

p = (x , y , I )

-0.005

-0.0025

 0

 0.0025

 0.005

 0  1  2  3  4  5  6

q !
✓

pq(F#)
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pI (F#)

n(p, q)

◆

n = 16, n = 14
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Restricted three body problem

Neptune-Triton: the result

Theorem

Neptune-Triton: µ = 0.000208923

For any # 2 (0, 0.000016], there
exists an orbit with the change of
energy:

H(j#
t(#)(q)) = H(q) +

1

4
10�8

good news: explicit range of #

not so good: 1
410

�8 is small...
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We can prove symbolic dynamics

Hausdor↵ dimension of di↵using orbits > state space dimension �1.
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Closing remarks

Works in higher dimensions

Explicit parameter range

Explicit bound on di↵usion time: C/#

Symbolic dynamics in energy

Bound on Hausdor↵ dimension

Suitable for computer assisted proofs
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Thank you for your attention.
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A topological mechanism for diffusion, with application to the elliptic

restricted three body problem - Maciej Capinski

Lecture notes - Ori S. Katz

October 10, 2018

Abstract

We present a topological mechanism of diffusion in a priori chaotic systems. The method leads to a proof

of diffusion for an explicit range of perturbation parameters. The assumptions of our theorem can be verified
using interval arithmetic numerics, leading to computer assisted proofs. As an example of application we prove
diffusion in the Neptune-Triton planar elliptic restricted three body problem. Joint work with Marian Gidea.

1 Lecture notes

Motivation:
Given a Hamiltonian system, with ϵ the perturbation parameter. ϵ = 0 -> Hamiltonian is autonomous, energy

is conserved.
NHIM - normally hyperbolic invariant manifold. Assume the NHIM is 1-dimensional, parametrized by I, θ.
Focusing on one action, the stable and unstable manifolds intersect transversally, and dynamics restricted to an

energy level.
When we switch on a perturbation, can we have diffusion in the energy - in the action - for an arbitrarily small

ϵ? (in chaotic systems)
Objectives (goals):

• We want to develop a method that work for all perturbations taken from a given interval (0, ϵ].

• We want to obtain estimates on the diffusion time, considering chaotic diffusion.

• What could we say about the Hausdorff dimension?

• We would like a method that is suitable for computer assisted proofs.

Teaser: Theorem about the planar elliptic restricter 3 body problem (PER3BP) - we will talk about it in more
detail later on.

Start with a map of the phase plane with a hyperbolic fixed point, stable and unstable manifolds intersecting.
Consider a 1-dimensional curve aligned with the unstable manifold. After a certain number of iterates we return
to a previous position (arbitrarily close). This 1D curve is referred to as a horizontal disc.

Next stage - add rotation in an additional variable. Now, if the horizontal disc returns it will return at a different
angle (in the new variable). Iterating enough time, we can find a given set U that the trajectory returns to.

Extending by one more direction trivially, we add a constant in another direction. This is not completely trivial.
The full system is defined as the unperturbed system.
Now, consider a family of maps parameterized by ϵ. For ϵ = 0, we return to the previous case.
For the theorem (page 7/17), the following assumptions are made:
1. The horizontal disc returns to U.
2. Consider points x that return, with the number of returns increasing by cϵ.

How do we validate these assumptions? The key element is propagating and controlling the evolution of the
horizontal discs.

Tools: The covering relation relates to exit sets, describing the expanding and contracting directions of the
evolution.
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What is the covering relation useful for?
Theorem ([1]) (page 8/17) - given a loop of covering relations, there exists a trajectory that passes through the

sets.
Another tool: Cone conditions. It means that the image of a cone given the dynamics lies inside the cone. How

is this verified? It is easy to validate given bounds on the derivatives of the functions.
How does this look like in higher dimensions? The picture is similar.
Theorem ([2]) (page 10/17) requires assumptions of cone condition and covering.
Connecting sequence (an attempt to draw 4 dimensions) - this cannot be done indefinitely, eventually the en-

closing volume will blow up. However, since we look only at the horizontal disc we know it will not grow. Through
this covering sequence, we know the energy is increasing. If the increase is above 1, we have achieved diffusion. If
not, we iterate again.

Example: The restricted 3-body problem.
Equations - elliptic case. If ϵ = 0 the dynamics are on circles. What is the motion of the small mass?
If ϵ ̸= 0, what are the dynamics? Obtain pulsating. There is a change of coordinates to pulsating coordinates

in which the two primaries are motionless, as in the circulate (ϵ = 0) case. What is the difference? The problem
becomes non-autonomous time-periodic, as the systems we used to prove the theorems in the previous sections.

Circular problem - Neptune-Triton system. Choose just two homoclinic orbits that derive from a periodic
solution. Define a map Fϵ on which we will construct the iterated sequence. Iterating the map enough times, we
return to the initial volume.

Comment about dimensions: We’re talking about the circular problem here - 4 dimensions. But the circular
problem is autonomous, energy is conserved, so we can drop one dimension. Further restricting to Poincare, we
have 2 dimensions. What happens when we turn on the perturbation? No conservation of energy, more coordinates.
Taking the section Y = 0 we drop one dimension, instead of using PY we can use the energy, and then we can align
the remaining vectors to obtain the same picture we used previously.

Finally we obtain the theorem that shows an increase in energy (page 15/17). Although the increase is small,
this process can be reiterated again and again to gain an arbitrary growth of energy.

We can prove symbolic dynamics by showing that given two regions the trajectory gains energy in one and loses
energy in the other.

Also, we have gained “for free” a lower bound on the Hausdorff dimension of diffusing orbits.

Closing remarks:
This is the simplest, lowest dimensional case of a more general mechanism. This is a different approach than

the usual KAM approach.
We have an explicit parameter range and an explicit bound on the diffusion time C/ϵ. Symbolic dynamics in

energy, bound on Hausdorff dimension, suitable for computer assisted proofs.

2 Questions:

- From symbolic dynamics, can we prove an infinite number of periodic trajectories?
There is an infinite number of periodic trajectories.
- How sensitive is the method to the transversality of the intersections of the invariant manifolds, since you

claimed you don’t need to check transversality?
Transversality is useful when you want to position your sets - they are positioned on the transversal intersections.

They could be positioned in other methods but this would be harder.
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