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Plan of the presentation

Motivation
Example

Main result
Covering relations

Cone conditions

Elliptic restricted three body problem - computer assisted proof
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Motivation

for e = 0 we have: A
@ A NHIM, parameterised by /, 6
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Motivation

x" = JV(H(x) +¢eG(t, x))

for e = 0 we have:
o A NHIM, parameterised by /, 0

@ Stable and unstable manifold
intersect transversally

@ Dynamics restricted to an
energy level

Question: Can we diffuse in / over [0, 1] for e > 07
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Motivation

x' = JV(H(x) +¢eG(t, x))

Our goals:

Explicit range of € € (0, €]
Estimates on diffusion time

Symbolic dynamics

Hausdorff dimension of the
set of diffusing orbits

Method suitable for
computer assisted proofs
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Motivation

Our goals:

Explicit range of € € (0, €] Theorem
@ Estimates on diffusion time In the Neptune-Triton PER3BP
e Symbolic dynamics
°

Hausdorff dimension of the p = 0.000208923,

set of diffusing orbits for any ¢ € (0,0.000016] we have
Method suitable for diffusion over energies of size %10_8.
computer assisted proofs

v
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Motivating example

f:R*> — R?
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Motivating example

f:R*> — R?

g :R?>x 8! - R? x 8!

g(x,y,0) = (f(x,y),0+w)
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Motivating example

f:R* = R?

g :R?>x 8! - R? x 8!

g(x,y,0) = (f(x,y),0+w)

F.:R°xS'xR—>R?>xS' xR

Fe—o(x,y,0,1) = (f(x,y),0 +w, )
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Main result

F.oR2xS'xR >3 R®>xS' xR

Feco(x,y,0,1) = (f(x,y),0 +w, 1)

Yy
x
0

x{l € R}
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Main result

F.oR2xS'xR >3 R®>xS' xR

Feco(x,y,0,1) = (f(x,y),0 +w, 1)

Theorem

If any horizontal disc ‘returns’ to U and for
points x that return

mFl (x) > mx + ce
then for any € > 0 4% and AN for which

Y
x
mx =0, 9}4

mFN(R) > 1. x{l € R}

o’
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Main result

F.:R°xS'xR > R?>xS8' xR
Feeo(x,y,0,1) = (f(x,y),0 +w, 1)

Theorem

Horizontal discs can ‘travel’ between U;
and U; fori,j € {1,2}.
For points that travel from U; to U

T Fl(x) > mmx + ce.
For points that travel from U, to Us

Y
x
Rl (x) < mmyx — ce. 0

Then we have symbolic dynamics in I. x{l € R}

4
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Tools

Verification of assumptions
Definition
. . F
Covering relation, Np = N

No Ny

E§917(]\70)

One dimensional unstable
coordinate:

No N

F(No)

MSRI Diffusion - computer assisted proofs 9 Oct 2018 8 / 17



Tools

Verification of assumptions

Definition One dimensional unstable
Covering relation, Ny :F> Ny coordinate:
Ny Ny
Ny Ny E
E§9 )3 ' F(No)
F(No) )

Theorem ([1])

N,
oo mL Sy | 0

A\ v

Then there exists a trajectory @ @
that passes through the sets. -

4 N3 N2

[1] M. Gidea, P. Zgliczyriski, “Covering relations for multidimensional dynamical systems” JDE
MSRI
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Tools U

\_ P =
- - . \ﬂ — E.
Verification of assumptions

Definition One dimensional unstable

Covering relation, Ny RN Ny coordinate:

NO N1
Ny Ny E
E§§ 2 i ' F(No)
F(No) |

No

Theorem ([1]) Ne f=F -

N,
oo mL Sy | 0

A\ v

Then there exists a trajectory @ @
that passes through the sets. -

4 N3 N2

[1] M. Gidea, P. Zgliczyriski, “Covering relations for multidimensional dynamical systems” JDE
MSRI
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Verification of assumptions \u

Cone conditions

(L
=
||

a > 0. Coordinates (x, p) € R x R3.
Cone:

Clx'p") = {(p) : I —x| > allp" — p|[}

Definition
F satisfies cone condition iff

F(C(q)) C C(F(q))
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Verification of assumptions P = 6

Cone conditions

a > 0. Coordinates (x, p) € R x R3.
Cone:

Cx"p") = {0 p) s X" =x| = aflp" — pl[}

Definition
F satisfies cone condition iff l(
F(C(q)) C C(F(q)
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Verification of assumptions P = 6

Cone conditions -
\‘

a > 0. Coordinates (x, p) € R x R3.
Cone:

Cx"p") = {0 p) s X" =x| = aflp" — pl[}

Definition
F satisfies cone condition iff l(
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Verification of assumptions \u

Theorem ([2])

Cone conditions and Ny :F> Ny :F> e :F> Ny imply

he | — 1% he | = o = T
Ng Nl N2 Nk

[2] P. Zgliczyriski, “Covering relations, cone conditions and the stable manifold theorem”, JDE
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Verification of assumptions

Theorem ([2])

P
%:

N,

.

Cone conditions and Ny :F> Ny :F> e :F> Ny imply

—

ho

No

%

hy

_)

ha

Ny

N,

— — hk

N,

[2] P. Zgliczyriski, “Covering relations, cone conditions and the stable manifold theorem”, JDE
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Verification of assumptions \u

b -
M - o¢

N,
5

Cone conditions and Ny :F> Ny :F> e :F> Ny imply

Theorem ([2])

he | — 1% he | = o = T
Ng Nl N2 Nk

[2] P. Zgliczyriski, “Covering relations, cone conditions and the stable manifold theorem”, JDE
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P
>
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P
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Verification of assumptions \u

X‘

P
>
Zg @w

Cone conditions and Ny :F> Ny :F> e :F> Ny imply

Theorem ([2])
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Connecting Sequence
ho

S=[-1,1] x [-1,1] x R X [s1, 5]

ha | —

D=[-1,1x [~1,1] x [0,1] X [s1, 5]

L

TA I

Ny

No

@ Assume that we can enclose any horizontal disc in D by a set Ny

@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence
S=[-1,1 x[-1,1] xR

ho

ha | —

X [51, 52]

D=[-1,1x [~1,1] x [0,1] X [s1, 5]

A

No

Ny

No

@ Assume that we can enclose any horizontal disc in D by a set Ny

@ Assume that we have a sequence of coverings that lands back to S

MSRI
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Connecting Sequence

e | o PR R
S=[-1,1] x [-1,1] x R X [s1, 5] - N ¥,

D=[-1,1x [~1,1] x [0,1] X [s1, 5]

IA I
No

20 | !

0 i 27

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence

S=[-1,1]x[-1,1] x R x [s1, 5] :
D=[-1,1] x [-1,1] x [0,1] X [s1, s2] E}

LT

0 |=———=y o

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence

S=[-1,1] x [-1,1] x R X [s1, 5]
D=[-1,1] x [-1,1] x [0, 1] X [s1, 52]

S S
IA I
1 No M i T
[ ] 20| I LV ¢
0 = — 2m]

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence

S=[-1,1] x [-1,1] x R X [s1, 5]
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TA I IT
1 By

N 2
[ ] || | v/

@ Assume that we can enclose any horizontal disc in D by a set Ny
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Connecting Sequence

S=[-1,1] x [-1,1] x R X [s1, 5]
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I 2 T | WY B
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Connecting Sequence
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]

L, >

s S
Ilu . ~ , Ny , IT Nj
e 2 A A A
0 == — = /

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence
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Connecting Sequence
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Ilu . ~ , Ny , IT Nj
e 2 A W A
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@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence
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Connecting Sequence
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]
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@ Assume that we can enclose any horizontal disc in D by a set Ny
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]

L, >

Yy
I =
i No
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o] | :

—>

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Connecting Sequence
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4 [ 1
L. |
i No

TA I
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0 = 27
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£

@ Assume that we can enclose any horizontal disc in D by a set Ny
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]
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4 i T
= b
x No N
S S
TA IT
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]
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4 I =5 E =
R I ¥, \
S S
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1 No N |
[o] [gwl|  yowl | ¢
0 — | S—
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Connecting Sequence
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z No Ny \
S S
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0 L X 2l
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]
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Ny
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]

L, >

Ny
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Ilu . ~ \ Nz\ IT - N3 '
[o] [l N VT 2o\ o
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Connecting Sequence
S=[-1,1] x [-1,1] x R X [s1, 5]

L, >

Ny

S S
11 A N N i Nz\ IT - N3 :
=) 7 R | |
0 T A" X[ 2x[ \ \

@ Assume that we can enclose any horizontal disc in D by a set Ny
@ Assume that we have a sequence of coverings that lands back to S
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Restricted three body problem

Equations - elliptic case

\/

—lti-,u 1

€ eccentricity
6 true anomaly (if e =0, 6 = t)

H. (X, Y, Px, Py,0) = (Px+Y)+(Py=X)*>  Q(X.Y)

2 1+ ecos(f)’
dX _ 9H. dPx _ _ 9H,
do = 9Py’ o =~ T ox
dy _ 3H, dPy _ _ 3H,
do = Py’ e — —oav-

[3] V. G. Szebehely, “Theory of Orbits, The R3BP", Academic Press 1967



Restricted three body problem

Neptune-Triton system: u = 0.000208923,
For e = 0 we have

005

> o

0,025

005

-1.02 El 098 096 094 102

098 096 04
x

x

Fe is the map from {Y =0} to {Y = 0}. Sets Np, ..., Ny on {Y = 0}.
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Neptune-Triton system: u = 0.000208923,
For e = 0 we have

g

- B

098

098 096 04
X

Fe is the map from {Y =0} to {Y = 0}. Sets Np, ..., Ny on {Y = 0}.

No= Ny = ...= Niz= Ny No= Ny = ...= Nis = Ny

{v 0}
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Restricted three body problem

Neptune-Triton: choice of 6
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Restricted three body problem

Neptune-Triton: the result

Theorem
Neptune-Triton: u = 0.000208923

For any € € (0,0.000016], there
exists an orbit with the change of
energy:

H(¢y () = H(q) + ;1110’8 44

@ good news: explicit range of ¢
@ not so good: 31078 is small...
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@ We can prove symbolic dynamics

@ Hausdorff dimension of diffusing orbits > state space dimension —1.
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Closing

remarks

Works in higher dimensions

Explicit parameter range

Explicit bound on diffusion time: C/e
Symbolic dynamics in energy

Bound on Hausdorff dimension

Suitable for computer assisted proofs
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A topological mechanism for diffusion, with application to the elliptic
restricted three body problem - Maciej Capinski

Lecture notes - Ori S. Katz

October 10, 2018

Abstract

We present a topological mechanism of diffusion in a priori chaotic systems. The method leads to a proof
of diffusion for an explicit range of perturbation parameters. The assumptions of our theorem can be verified
using interval arithmetic numerics, leading to computer assisted proofs. As an example of application we prove
diffusion in the Neptune-Triton planar elliptic restricted three body problem. Joint work with Marian Gidea.

1 Lecture notes

Motivation:

Given a Hamiltonian system, with e the perturbation parameter. ¢ = 0 -> Hamiltonian is autonomous, energy
is conserved.

NHIM - normally hyperbolic invariant manifold. Assume the NHIM is 1-dimensional, parametrized by I, 6.

Focusing on one action, the stable and unstable manifolds intersect transversally, and dynamics restricted to an
energy level.

When we switch on a perturbation, can we have diffusion in the energy - in the action - for an arbitrarily small
€? (in chaotic systems)

Objectives (goals):

e We want to develop a method that work for all perturbations taken from a given interval (0, €|.
e We want to obtain estimates on the diffusion time, considering chaotic diffusion.

e What could we say about the Hausdorff dimension?

e We would like a method that is suitable for computer assisted proofs.

Teaser: Theorem about the planar elliptic restricter 3 body problem (PER3BP) - we will talk about it in more
detail later on.

Start with a map of the phase plane with a hyperbolic fixed point, stable and unstable manifolds intersecting.
Consider a 1-dimensional curve aligned with the unstable manifold. After a certain number of iterates we return
to a previous position (arbitrarily close). This 1D curve is referred to as a horizontal disc.

Next stage - add rotation in an additional variable. Now, if the horizontal disc returns it will return at a different
angle (in the new variable). Iterating enough time, we can find a given set U that the trajectory returns to.

Extending by one more direction trivially, we add a constant in another direction. This is not completely trivial.

The full system is defined as the unperturbed system.

Now, consider a family of maps parameterized by €. For ¢ = 0, we return to the previous case.

For the theorem (page 7/17), the following assumptions are made:

1. The horizontal disc returns to U.

2. Consider points x that return, with the number of returns increasing by ce.

How do we validate these assumptions? The key element is propagating and controlling the evolution of the
horizontal discs.

Tools: The covering relation relates to exit sets, describing the expanding and contracting directions of the
evolution.



What is the covering relation useful for?

Theorem ([1]) (page 8/17) - given a loop of covering relations, there exists a trajectory that passes through the
sets.

Another tool: Cone conditions. It means that the image of a cone given the dynamics lies inside the cone. How
is this verified? It is easy to validate given bounds on the derivatives of the functions.

How does this look like in higher dimensions? The picture is similar.

Theorem ([2]) (page 10/17) requires assumptions of cone condition and covering.

Connecting sequence (an attempt to draw 4 dimensions) - this cannot be done indefinitely, eventually the en-
closing volume will blow up. However, since we look only at the horizontal disc we know it will not grow. Through
this covering sequence, we know the energy is increasing. If the increase is above 1, we have achieved diffusion. If
not, we iterate again.

Example: The restricted 3-body problem.

Equations - elliptic case. If € = 0 the dynamics are on circles. What is the motion of the small mass?

If € # 0, what are the dynamics? Obtain pulsating. There is a change of coordinates to pulsating coordinates
in which the two primaries are motionless, as in the circulate (¢ = 0) case. What is the difference? The problem
becomes non-autonomous time-periodic, as the systems we used to prove the theorems in the previous sections.

Circular problem - Neptune-Triton system. Choose just two homoclinic orbits that derive from a periodic
solution. Define a map F. on which we will construct the iterated sequence. Iterating the map enough times, we
return to the initial volume.

Comment about dimensions: We're talking about the circular problem here - 4 dimensions. But the circular
problem is autonomous, energy is conserved, so we can drop one dimension. Further restricting to Poincare, we
have 2 dimensions. What happens when we turn on the perturbation? No conservation of energy, more coordinates.
Taking the section Y = 0 we drop one dimension, instead of using Py- we can use the energy, and then we can align
the remaining vectors to obtain the same picture we used previously.

Finally we obtain the theorem that shows an increase in energy (page 15/17). Although the increase is small,
this process can be reiterated again and again to gain an arbitrary growth of energy.

We can prove symbolic dynamics by showing that given two regions the trajectory gains energy in one and loses
energy in the other.

Also, we have gained “for free” a lower bound on the Hausdorff dimension of diffusing orbits.

Closing remarks:

This is the simplest, lowest dimensional case of a more general mechanism. This is a different approach than
the usual KAM approach.

We have an explicit parameter range and an explicit bound on the diffusion time C/e. Symbolic dynamics in
energy, bound on Hausdorff dimension, suitable for computer assisted proofs.

2 Questions:

- From symbolic dynamics, can we prove an infinite number of periodic trajectories?

There is an infinite number of periodic trajectories.

- How sensitive is the method to the transversality of the intersections of the invariant manifolds, since you
claimed you don’t need to check transversality?

Transversality is useful when you want to position your sets - they are positioned on the transversal intersections.
They could be positioned in other methods but this would be harder.



