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Time evolution of space periodic water waves in Trieste gulf:

In section it is described by a bidimensional fluid, periodic in x
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Water Waves: Euler equations for an irrotational, incompressible
fluid in S÷(t) = {≠h < y < ÷(t, x)} under gravity and capillarity
Y
______]

______[

ˆt� + 1

2

|Ò�|2 + g÷ = Ÿˆx

3
÷xÔ
1+÷2x

4
at y = ÷(t, x)

�� = 0 in ≠ h < y < ÷(t, x)
ˆy � = 0 at y = ≠h
ˆt÷ = ˆy � ≠ ˆx÷ · ˆx� at y = ÷(t, x)

u = Ò� = velocity field, rotu = 0 (irrotational),
divu = �� = 0 (uncompressible)

g = gravity, Ÿ = surface tension coe�cient
Mean curvature = ˆx

3
÷xÔ
1+÷2x

4

Unknowns:
free surface y = ÷(t, x) and the velocity potential �(t, x , y)



Water waves equations Linear Theory Main results Almost global existence Quasi-periodic solutions Ideas of Proof

Zakharov formulation ’68

Infinite dimensional Hamiltonian system:

ˆtu = JÒuH(u) , u :=
A

÷
Â

B

, J :=
A

0 Id
≠Id 0

B

,

canonical Darboux coordinates:
÷(x) and Â(x) = �(x , ÷(x)) trace of velocity potential at y = ÷(x)

(÷, Â) uniquely determines � in the whole {≠h < y < ÷(x)}
solving the elliptic problem:

� is harmonic
�� = 0 in {≠h < y < ÷(x)}, �|y=÷ = Â, ˆy � = 0 at y = ≠h
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Hamiltonian: total energy on S÷ = T ◊ {≠h < y < ÷(x)}

H := 1
2

⁄

S÷

|Ò�|2dxdy +
⁄

S÷

gy dxdy + Ÿ
⁄

T

Ò
1 + ÷2x dx

kinetic energy + potential energy + capillary energy

Hamiltonian expressed in terms of (÷, Â)

H(÷, Â) = 1

2

s
T Â(x) G(÷)Â(x) dx + 1

2

s
T g÷2 dx + Ÿ

s
T

Ò
1 + ÷2x dx

Dirichlet–Neumann operator (Craig-Sulem ’93)

G(÷)Â(x) :=
Ò

1 + ÷2x ˆn�|y=÷(x)

= (�y ≠ ÷x�x )(x , ÷(x))



Water waves equations Linear Theory Main results Almost global existence Quasi-periodic solutions Ideas of Proof

Zakharov-Craig-Sulem formulation
Y
__]

__[

ˆt÷ =G(÷)Â = ÒL2

Â H(÷, Â)

ˆtÂ =≠g÷ ≠ Â2

x
2 +

!
G(÷)Â + ÷xÂx

"
2

2(1 + ÷2x ) + Ÿ÷xx
(1 + ÷2x )3/2

=≠ÒL2

÷ H(÷, Â)

Dirichlet–Neumann operator

G(÷)Â(x) :=
Ò

1 + ÷2x ˆn�|y=÷(x)

1 G(÷) is linear in Â, non-local,
2 self-adjoint with respect to L2(Tx )
3 G(÷) Ø 0, G(1) = 0
4 ÷ ‘æ G(÷) nonlinear, smooth,
5 G(÷) is pseudo-di�erential, G(÷) = Dx tanh(hDx ) + OPS≠Œ

Calderon, Craig, Lannes, Metivier, Alazard, Burq, Zuily, Delort...
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Symmetries

Reversibility
H(÷, ≠Â) = H(÷, Â)

Involution
H ¶ S = H, S : (÷, Â) æ (÷, ≠Â), S =

#
1 0

0 ≠1

$
S2 = Id,

Reversible vector field XH = JÒH
XH ¶ S = ≠S ¶ XH ≈∆ �t

H ¶ S = S ¶ �≠t
H

Equivariance under the Z/(2Z)-action of the group {Id, S}
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x -invariance

Momentum is a prime integral

M(÷, Â) =
⁄

T
÷x (x) Â(x) dx

Noether theorem:
Associated Hamiltonian vector field generates the translations

JÒM = ˆx

A
÷
Â

B

◊ ‘æ (÷(x + ◊), Â(x + ◊))
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Standing Waves

Invariant subspace: functions even in x
÷(≠x) = ÷(x) , Â(≠x) = Â(x)

Thus the velocity potential

�(≠x , y) = �(x , y) =∆ �x (0, y) = 0

and, using also 2fi periodicity,

≠�x (fi, y) = �x (≠fi, y) = �x (fi, y) =∆ �x (fi, y) = 0

=∆ no flux of fluid outside the walls {x = 0} and {x = fi}.

Neumann boundary conditions at x = 0 and x = fi

÷x (0) = ÷x (fi) = 0 , Âx (0) = Âx (fi) = 0
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Prime integral: mass
⁄

T
÷(x)dx

Phase space

÷ œ Hs
0

(T) :=
)
÷ œ Hs(T) :

⁄

T
÷(x)dx = 0

*

u œ Hs(T) … u(x) =
ÿ

kœZ
ukeikx ,

ÿ

kœZ
|uk |2ÈkÍ2s =: ÎuÎ2

Hs < +Œ

The variable Â is defined modulo constants: only the velocity field
Òx ,y � has physical meaning.

Â œ Ḣs(T) = Hs(T)/ ≥

u(x) ≥ v(x) ≈∆ u(x) ≠ v(x) = c
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Linear water waves theory

Linearized system at (÷, Â) = (0, 0)
I

ˆt÷ = G(0)Â,

ˆtÂ = ≠g÷ + Ÿ÷xx

Dirichlet-Neumann operator at the flat surface ÷ = 0 is

G(0) = D tanh(hD) , D = ˆx
i = Op(›)›œR

Fourier multiplier notation: given m : Z æ C
m(D)h = Op(m)h = q

jœZ m(j)hjeijx , h(x) = q
jœZ hjeijx
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Linear water waves system

ˆt
# ÷

Â

$
=

5
0 G(0)

≠g+Ÿˆxx 0

6# ÷
Â

$

Complex variable

u = �(D)÷ + i�≠1(D)Â , �(D) =
1

g+ŸD2

D tanh(hD)

2
1/4

Linear Water Waves

ut + iÊ(D)u = 0, Ê(D) =
Ò

D tanh(hD)(g + ŸD2)

Dispersion relation

Ê(›) =
Ò

› tanh(h›)(g + Ÿ›2)
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Œ-decoupled harmonic oscillators

u(t, x) =
ÿ

jœZ
e≠iÊ(j)tuj(0)eijx

Linear frequencies of oscillations

Ê(j) =
Ò

j tanh(hj)(g + Ÿj2) , j œ Z ,

All solutions are periodic, quasi-periodic, almost periodic in time
according to the irrationality properties of (Êj(h, g , Ÿ))jœZ

The Sobolev norm is constant
Îu(t, ·)ÎHs = Îu(0, ·)ÎHs
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Dispersion relation

Ê(›) =
Ò

› tanh(h›)(g + Ÿ›2)

1 Gravity-Capillary water waves

Ê(›) =
Ò

› tanh(h›)(g + Ÿ›2) ≥
Ô

Ÿ|›|
3

2 as |›| æ +Œ

2 Gravity water waves

Ê(›) =
Ò

› tanh(h›)g ≥ Ôg |›|
1

2 as |›| æ +Œ

Remark: x œ T and u(x) has zero average =∆ |›| Ø 1
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Nonlinear water waves

Main questions

1 For which time interval (≠T
max

, T
max

) solutions of the
nonlinear gravity-capillary water waves equations exist?

2 Are there periodic, quasi-periodic, almost periodic solutions
(thus global in time) of the nonlinear gravity-capillary water
waves equations?
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Major di�culties:

Gravity-Capillary WW are quasi-linear PDEs
ut + iÊ(D)u = N(u, ū) , Ê(D) ≥ |D|3/2

N = quadratic nonlinearity with derivatives of order N(|D|3/2u)

Gravity WW are fully nonlinear PDEs
ut + iÊ(D)u = N(u, ū) , Ê(D) ≥ |D|1/2

N = quadratic nonlinearity with derivatives of order N(ˆxu)
Singular perturbation of the linear vector field iÊ(D)u

Periodic boundary conditions x œ T
NO dispersive e�ects of the linear PDE as for x œ R2, x œ R and
data decaying at infinity:
Global well-posedness: S.Wu, Germain-Masmoudi-Shatah,
Ionescu-Pusateri, Alazard-Delort, Ifrim-Tataru, Alazard-Burq-Zuily,
. . .
Not available conserved quantities controlling high Sobolev norms
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Nonlinear water waves, main results:

1 Long time existence Birkho� normal form result:
Gravity-capillary: M. Berti- J-M. Delort, ’17,
For most (g , Ÿ), for any small initial condition of size Á the
solutions are defined for long times TÁ Ø O(Á≠N)
Gravity: M. Berti, R. Feola, F. Pusateri, ’18,
If Ÿ = 0, h = +Œ then TÁ Ø O(Á≠3)

2 KAM results: Existence of quasi-periodic solutions for
Gravity-capillary: Berti-Montalto, ’16,
Gravity: Baldi-Berti-Haus-Montalto, ’17,

solutions defined for all times, for "most" initial conditions
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Almost global existence

Theorem (M.B., J-M.Delort, 2017)
There is a zero measure subset N in ]0, +Œ[2 such that, for any
(g , Ÿ) in ]0, +Œ[2\N , for any N in N, there is s

0

> 0 and, for any
s Ø s

0

, there are Á
0

> 0, c > 0, C > 0 such that, for any Á œ]0, Á
0

[,
any even function (÷

0

, Â
0

) in Hs+

1

4

0

(T,R) ◊ Ḣs≠ 1

4 (T,R) with

Î÷
0

Î
Hs+

1

4

0

+ ÎÂ
0

Î
˙Hs≠ 1

4

< Á

the gravity-capillary water waves equations have a unique classical
solution, even in space,

(÷, Â) œ C0

!
] ≠ TÁ, TÁ[, Hs+

1

4

0

(T,R) ◊ Ḣs≠ 1

4 (T,R)
"

with
TÁ Ø cÁ≠N

satisfying the initial condition ÷|t=0

= ÷
0

, Â|t=0

= Â
0
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Remark 1) Time of existence

1 N = 1, time of existence TÁ = O(Á≠1), local existence theory,
Beyer-Gunther, Coutand-Shkroller, Alazard-Burq-Zuily

2 N = 2, time of existence TÁ = O(Á≠2), S. Wu, Ifrim-Tataru, if
h = +Œ there are no "triple wave interactions" + quasi-linear
modified energy

No solutions k
1

, k
2

, k
3

œ Z \ 0 of
I

|k
1

|
1

2 ± |k
2

|
1

2 ± |k
3

|
1

2 = 0
k

1

± k
2

± k
3

= 0

3 For N Ø 2, to get time of existence TÁ = O(Á≠N), we erase
parameters (g , Ÿ) to avoid multiple wave interactions

Ionescu-Pusateri: x œ T2, TÁ = O(Á≠ 5

3 ) for most values of (g , Ÿ)
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N = 3, Berti, Feola, Pusateri, ’18, x œ T,
Gravity waves (Ÿ = 0) with infinite depth h = +Œ: TÁ = O(Á≠3),

There are nontrivial 4-order wave interactions (Benjamin-Fair)
Nevertheless Zakharov-Dyanchenko, Craig-Workfolk proved
that the formal 4-th order Birkho� normal form Hamiltonian
iˆz̄H(4)

BNF is integrable and well posed on Hs ("null condition")
Using bounded changes of variables:

Poincaré-Birkho� Normal Form for pure gravity WW

ˆtz = iˆz̄H(4)

BNF + XØ4

(z)
where XØ4

(z) admits energy estimates in Hs

=∆ We justify use of these formal normal form

expansions used successfully by physicists!

In same spirit that Lindsted formal series in celestial
mechanics were rigorously justified a-posteriori by KAM
theorem (Moser)
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Remark 2) Parameters

1 Internal parameters: fixed equation! We can also think to
fix (Ÿ, g , h) and the result holds for most space "wave-length":
periodic boundary conditions x œ ⁄T, ⁄ œ R.
The linear frequencies depend non-trivially w.r.t ⁄

Êj =
Ò

⁄j tanh(h⁄j)(g + Ÿ⁄2j2)
2 We fixed h = 1. We can not use h as a parameter:

h æ Êj(h) =
Ò

j tanh(hj)(g + Ÿj2)

is not sub-analytic. The parameter h moves just exponentially
the frequencies:

Ê(j) =
Ò

j tanh(hj) =
Ò

|j |
!
1 + O(e≠hj)

"
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Remark 3) Reversible and Hamiltonian structure

Algebraic property to exclude “growth of Sobolev norms"
1 Hamiltonian
2 Reversibility (Poincaré, Moser)

Dynamical systems heuristic explanation:
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Water waves
ut = iÊ(D)u + N

2

(u, ū) , N
2

(u, ū) = O(u2)

Fourier and Action-Angle variables (◊, I)
u(x) = q

jœZ ujeijx , uj =


Ijei◊j

Sobolev norm ÎuÎ2

Hs = q
jœZ(1 + j2)s Ij

Small amplitude solutions
Rescaling u ‘æ Áu

ut = iÊ(D)u + ÁO(u2)
in action-angle variables reads

d
dt Ij = Áfj(Á, ◊, I) , d

dt ◊j = Ê(j) + Ágj(Á, ◊, I)

angles ◊j = Ê(j)t “rotate fast", actions Ij(t) “slow" variables
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“Averaging principle":
The e�ective dynamics of the actions is expected to be governed by

d
dt Ij = ÁÈfjÍ(Á, I) , ÈfjÍ(Á, I) :=

s
TŒ fj(Á, ◊, I)d◊

Necessary condition for QP solutions and long time existence
ÈfjÍ(I) = 0

Hamiltonian case: f (◊, I) = (ˆ◊H)(◊, I)

=∆
⁄

TŒ
(ˆ◊H)(◊, I)d◊ = 0

Reversible vector field (Moser)
d
dt ◊ = g(I, ◊) , d

dt I = f (I, ◊) , f (I, ◊) odd in ◊, g(I, ◊) even in ◊

=∆
⁄

TŒ
f (◊, I)d◊ = 0
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The water waves equations (written in complex variables) are
reversible with respect to the involution

S : u(x) ‘æ ū(x)

that on the subspace
u(≠x) = u(x) , u(x) = q

jœZ ujeijx = q
jœZ


Ijei◊j eijx ,

is
Moser reversibility

(◊, I) ‘æ (≠◊, I)

Alinhac “good unknown" which has to be introduced to get
energy estimates (local existence theory) preserves the
reversible structure, not the Hamiltonian one
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Remark 4) Global existence?

Question: Do these solutions exist for all times?

Probably not

Craig-Workfolk: for Ÿ = 0, h = +Œ the water-waves PDEs are not
integrable at the fifth order Birkho� normal form
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Expected scenario for nearly-integrable Hamiltonian systems

1 KAM results: There are many solutions defined for all times:
selection of “initial conditions" giving rise to global
solutions

2 Almost global existence: |t| Æ cNÁ≠N .
Exponential estimates?

3 Arnold di�usion: What happens to a solution which does
not start on a KAM torus for times |t| > cNÁ≠N?
Chaos? Growth of Sobolev norms?
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Quasi-periodic solution with n frequencies of ut = X (u)

Definition
u(t, x) = U(Êt, x) where U(Ï, x) : Tn ◊ T æ R,

Ê œ Rn(= frequency vector) is irrational Ê · k ”= 0 , ’k œ Zn \ {0}
=∆ the linear flow {Êt}tœR is dense on Tn

Global in time
If n = 1 then U(Êt, x) is time-periodic with period T = 2fi/Ê
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Periodic solutions: n = 1
Plotnikov-Toland: ’01
Gravity Water Waves with Finite depth
Iooss-Plotnikov-Toland ’04, Iooss-Plotnikov ’05-’09
Gravity Water Waves with Infinite depth
Completely resonant, infinite dimensional bifurcation equation
Alazard-Baldi ’15,
Capillary-gravity water waves with infinite depth

Quasi-Periodic solutions: n Ø 2
Berti-Montalto ’16,
Gravity-Capillary Water Waves
Baldi-Berti-Haus-Montalto
Gravity Water Waves ’17
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Theorem (Baldi, Berti, Haus, Montalto, Inventiones Math. 2018 )
For every choice of the tangential sites S µ N \ {0}, there exists
s̄ > |S|+1

2

, Á
0

œ (0, 1) such that: for all ›j œ (0, Á2

0

), j œ S,
÷ a Cantor like set G› µ [h

1

, h
2

] with asymptotically full measure
as › æ 0, i.e. lim›æ0

|G›| = h
2

≠ h
1

, such that, for any depth
h œ G›, the gravity water waves equation has a reversible,
quasi-periodic standing wave solution (÷, Â) œ H s̄ of the form

÷(Ễjt, x) =
ÿ

jœS

Ò
›j cos(Ễjt) cos(jx) + o(

Ò
|›|)

Â(Ễjt, x) = ≠
ÿ

jœS

Ò
›jÊ

≠1

j sin(Ễjt) cos(jx) + o(
Ò

|›|)

with frequencies Ễj satisfying Ễj ≠ Êj(h) æ 0 as › æ 0.
The solutions are linearly stable.
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Linear stability: perturbative Floquet theory

There exist coordinates

(„, y , v) œ T‹ ◊ R‹ ◊ (Hs
x fl L2

Sc )

in which the linearized equation ˆth = JˆuÒH(u(Êt))h reads
Y
__]

__[

„̇ = by
ẏ = 0
vt = iµŒ(D)v , v = q

j /œS vjeijx , µŒ(j) œ R , v̇j = iµŒ
j vj ,

y(t) = y
0

, vj(t) = vj(0)eiµŒ
j (j)t =∆ Îv(t)ÎHsx = Îv(0)ÎHsx : stability

0, {iµŒ(j)}jœSc = Floquet exponents
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1 Sharp asymptotic expansion of the Floquet exponents

µŒ(j) = m
1

2

(j tanh(hj)) 1

2 + rj(h)

where m
1

2

œ R is a constant satisfying
m

1

2

≥ 1 , rj ≥ cj≠ 1

2 , c ≥ O(|›|a)

2 Bounded change of variables �(Ï) : Hs æ Hs , ’s Ø s
0
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Ideas of Proof for long time existence: normal form

1 Quadratic nonlinearity

ut = iÊ(D)u + P
2

(u) , P
2

(u) = O(u2)

Time of existence of solution with u(0) = Áu
0

is TÁ = O(Á≠1)
2 Cubic nonlinearity

ut = iÊ(D)u + P
3

(u) , P
3

= O(u3)

Time of existence of solution with u(0) = Áu
0

is TÁ = O(Á≠2)

Poincaré-Dulac Normal form idea
Look for a change of variable s.t. the nonlinearity becomes smaller
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Poincaré-Dulac-Birkho�

1 Perform change of variable to decrease the size of nonlinearity.
Required non-resonance conditions among linear frequencies

Ê(j
1

) ± Ê(j
2

) ± Ê(j
3

) ± Ê(j
4

) ”= 0
2 At higher degrees of homogeneity –yet at degree 4–

there remains "resonant terms" P
4

which can not be eliminated
Ê(j

1

) ≠ Ê(j
2

) + Ê(j
3

) ≠ Ê(j
4

) = 0 for j
1

= j
2

, j
3

= j
4

3 Check that these resonant terms do not contribute to Sobolev
energy. Algebraic structure of PDE, i.e. Hamiltonian

4 For Hamiltonian semilinear PDEs –Birkho↵ normal form–
Bambusi, Grebert, Delort, Szeftel ’02-’07,

For quasi-linear PDEs this procedure gives unbounded formal
transformations, like u ‘æ u + Á(ˆxu)2
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New procedure for quasi-linear PDEs:

1 First transform the water waves system to a diagonal,
constant coe�cients in x system up to smoothing
remainders

2 Then implement a "semilinear" normal form procedure which
reduces the size of the nonlinear terms

3 Check that the “resonant terms" left do not contribute to
energy estimates. Here Reversibility
for example

u̇j = iÊjuj + i(qn an|un|2)uj

f (Su) = ≠Sf (u) , S : uj ‘æ ūj

=∆ an œ R =∆ |uj(t)|2 constant
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Introducing Alinhac good unknown, paracomposition, and
paradi�erential non-linear changes of variables, bounded in Hs , we
transform (WW) into
Paradi�erential Normal form for gravity-capillary WW

ut = i
!
(1 + ’

3

(u))Ê(D) + ’
1

(u)|D|1/2 + r
0

(u; D)
"
u + R(u)u

where
1 Ê(›) = (› tanh(›)(1 + Ÿ›2))1/2, linear dispersion relation
2 ’

3

(u), ’
1

(u) are real valued, of size O(u), constant in x ,
’

3

(u) =
s
T ÷2

x dx =
s
T

!
Ê(D)ˆx (u≠ū

2i

)
"

2 dx
3 r

0

(u; ›) is a symbol of order 0 constant in x
4 R(u) is a regularizing operator: for any fl it maps Hs æ Hs+fl,

for fl Æ s ≠ 1

2

large, ÎR(u)[u]ÎHs+fl Æ CÎuÎHflÎuÎHs

=∆ we are back to a semilinear PDE situation
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Long time existence: energy estimates

The PDE
ut = i

!
(1 + ’

3

(u))Ê(D) + ’
1

(u)|D|1/2 + Re(r
0

(u; D)
"
u

preserves for all times t œ R the L2

x and Hs
x norms since the symbol

(1 + ’
3

(u))Ê(›) + ’
1

(u)|›|1/2 + Re(r
0

(u; ›))

is real (self-adjointness) and has constant coe�cients in x

Normal form
Reduce the size of Im(r

0

(u; ›)) and R(u) up to O(ÎuÎN)

by Reversibility the normal form has norm Î ÎHs as prime integrals
=∆ the Sobolev norm Îu(t)ÎHs of the solution with u(0) = O(Á)
remains bounded up to times |t| Æ O(Á≠N)
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Thanks for your attention!
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