)

rCT———
M S AN
- am
Mathematical Sciences Research Institute

17 Gauss Way  Berkeley, CA 94720-5070  p: 510.642.0143  f 510.642.8609  www.msri.org

NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Name: O RI KAtz Email/Phone; ORT KATZ, OK @Vﬂ Wf'/. Com
Speaker's Name:__ l”()cﬁr Foak lia ho QDF 5
Talk Title: Dg nomi Cs o £ Wﬂ ter W.wcs

Date: o / /{CI ’(3 Time: ﬂ:ﬁ@/ pm (circle one)

Please summarize the lecture in 5 or fewer sentences:_gc ent results abe.t the — complex
dyncmices of the water waves eavabtons of 2D fhid witl, rovity

& Capillary forces with Space — perivdic bounglarv Condihons, are presented,
Borti discvssed potlh lonq-fime Qxistence rervlts & bifvrcation

of rmafl-ang:!a'ivdo_ +ime ?,w.r.',_pcr‘-'od.'c Sofw Hons ,

CHECK LIST

(This is NOT optional, we will not pay for incomplete forms)

ﬁ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that
you will need to make copies of their notes and materials, if any.

-ﬁ Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after
the talk; please make arrangements with the speaker as to when you can do this. You may scan and
send materials as a .pdf to yourself using the scanner on the 3™ floor.

—%«  Computer Presentations: Obtain a copy of their presentation
e Overhead: Obtain a copy or use the originals and scan them
Y. Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil
or in colored ink other than black or blue.
e Handouts: Obtain copies of and scan all handouts

O For each talk, all materials must be saved in a single .pdf and named according to the naming
convention on the “Materials Received” check list. To do this, compile all materials for a specific talk
into one stack with this completed sheet on top and insert face up into the tray on the top of the
scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

O When you have emailed all files to yourself, please save and re-name each file according to the naming
convention listed below the talk title on the “Materials Received” check list.
(YYYY.MM.DD.TIME.SpeakerLastName)

O Email the re-named files to notes@msri.org with the workshop name and your name in the subject
line.

Scanned with CamScanner



Long time dynamics of Water Waves

Massimiliano Berti, SISSA,
MSRI, Berkeley, 10 October 2018




Time evolution of space periodic water waves in Trieste gulf:

KFSB: Fran wariacs)

In section it is described by a bidimensional fluid, periodic in x




Water waves equations

Euler equations for an irrotational, incompressible

fluid in S,(t) = {—h <y < n(t,x)} under gravity and capillarity

at¢+§lv¢lz+gnznax( 2 ) at y = n(t, x)

1+n2
AP =0 in —h<y<n(t,x)
0,® =0 at y = —h
0 = 0y ® — Ox1 - 0P at y =n(t,x)

u = V& = velocity field, rotu = 0 (irrotational),
divu = AP = 0 (uncompressible)
g = gravity, k = surface tension coefficient

Mean curvature = 8X< T
V143

free surface y = n(t, x) and the velocity potential (¢, x, y)




Water waves equations
Zakharov formulation '68

Infinite dimensional Hamiltonian system:

0 Id
Oru = IV, H(u), u:= <Z}>, J = (—Id O)’

canonical Darboux coordinates:

n(x) and ¥(x) = ®(x,n(x)) trace of velocity potential at y = n(x)

(n,%) uniquely determines ® in the whole {—h <y < n(x)}
solving the elliptic problem:

® is harmonic

AP =0 in{-h<y<nx)}, ®ly—p=1, o,d=0aty=—h




Water waves equations

Hamiltonian: total energy on S, =T x {—h <y < n(x)}

1
= v¢2wd-h/ dxd, +n/ 1+ 72 dx
2/gﬂ |” dxdy 5, & B V1t

kinetic energy + potential energy + capillary energy

Hamiltonian expressed in terms of (7, )

H(n, %) = 5 Jp(x) Gn)e(x) dx + 5 [y g dx + & 3 4/1 +n2 dx

Dirichlet-Neumann operator (Craig-Sulem '93)

MP(x) = /1475 0n®Ply—y) = (¢ ®,)(x,1(x))




Zakharov-Craig-Sulem formulation

Bin=G(n)= V5 H(n, )

¢X ( ()w‘f‘ﬁxl/’x) Knxx .
2t e Vo Hon)

Dirichlet-Neumann operator

G(77 \/1+77x6¢’y =n(x

@ G(n) is linear in 1, non-local,

@ self-adjoint with respect to L?(T,)

@ G(1) >0, G(1) =0

© 7 — G(n) nonlinear, smooth,

@ G(n) is pseudo-differential, G(n) = Dy tanh(hDy) + OPS~>°

Calderon, Craig, Lannes, Metivier, Alazard, Burq, Zuily, Delort...

\




Water waves equations
Symmetries

Reversibility

Reversible vector field Xy = JVH
XyoS=-SoXy <= o®LoS=S0d,}

Equivariance under the Z/(27Z)-action of the group {Id, S}



Water waves equations

X-invariance

Momentum is a prime integral

mezAmwwnw

Noether theorem:

Associated Hamiltonian vector field generates the translations

_ n
JVM = 0y <1/))

0 — (n(x +0),v(x +0))




Water waves equations
Standing Waves

Invariant subspace: functions even in x

n(=x) =n(x), P(=x) = p(x)

Thus the velocity potential
O(—x,y) = ®(x,y) = x(0,y)=0
and, using also 27 periodicity,
—Ou(m,y) = Ou(—m,y) = Ou(m,y) = Pu(m.y)=0

= no flux of fluid outside the walls {x = 0} and {x = 7 }.

Neumann boundary conditions at x =0 and x =7

Nx(0) =nx(7) =0, ¥x(0) = Yu(m) =0




Water waves equations

Prime integral: mass

/Tn(x)dx

Phase space

n € H3(T) := {n € H*(T) : ./11‘ n(x)dx =0}

u € H*(T) Zuke Z\uk\ = ||u)|2s < 400
kEZ kEZ

The variable 1) is defined modulo constants: only the velocity field
Vx,y® has physical meaning.

¥ € H5(T) = H5(T)/ ~

u(x) ~v(x) <= u(x)—v(x)=c




Linear Theory
Linear water waves theory

Linearized system at (7, ) = (0,0)

Ot = —gn + KMxx

Dirichlet-Neumann operator at the flat surface n =0 is

G(0) = Dtanh(hD). D= * = Op(&)eer




o e e
Linear water waves system

03] = | b 0| 18)

”
Complex variable

o 1o D2 1/4
u=ND)y+iN(D)y, AD)= (%)

V.
Linear Water Waves

us + iw(D)u=0, w(D)= \/Dtanh(hD)(g + kD?)

Dispersion relation

w(€) = \/€ tanh(he) (g + K€?)




oo-decoupled harmonic oscillators

u(t,x) =Y e “Wty;(0)el™

JEZL

Linear frequencies of oscillations
w(ji) = /itanh(h)(g + ), JEZ,

All solutions are periodic, quasi-periodic, almost periodic in time
according to the irrationality properties of (wj(h, g, K))jez

|

The Sobolev norm is constant

[u(t, s = [|u(0, )| s




Dispersion relation

w(€) = /€ tanh(he)(g + KE2)

© Gravity-Capillary water waves

w(€) = /e tanh(hE)(g + K€2) ~ VRIE[F as [¢] = +oo

@ Gravity water waves

w(€) = \/etanh(he)g ~ \/gl¢]7 as |€] = +oo

Remark: x € T and u(x) has zero average = [{| > 1



Main results

Nonlinear water waves

Main questions

@ For which time interval (— Tinax, Tmax) solutions of the
nonlinear gravity-capillary water waves equations exist?

@ Are there periodic, quasi-periodic, almost periodic solutions
(thus global in time) of the nonlinear gravity-capillary water
waves equations?



Main results

Major difficulties:

Gravity-Capillary WW are quasi-linear PDEs

ue +iw(D)u = N(u, 1), w(D)~ |DJ3/?
N = quadratic nonlinearity with derivatives of order N(|D|>/?u)

Gravity WW are fully nonlinear PDEs

e +iw(D)u = N(u, 1), w(D)~ |DJ*/?
N = quadratic nonlinearity with derivatives of order N(0,u)
Singular perturbation of the linear vector field iw(D)u

Periodic boundary conditions x € T

NO dispersive effects of the linear PDE as for x € R?, x € R and
data decaying at infinity:

Global well-posedness: S.Wu, Germain-Masmoudi-Shatah,
lonescu-Pusateri, Alazard-Delort, Ifrim-Tataru, Alazard-Burg-Zuily,

Not available conserved quantities controlling high Sobolev norms




Main results

Nonlinear water waves, main results:

O Long time existence Birkhoff normal form result:

e Gravity-capillary: M. Berti- J-M. Delort, '17,
For most (g, ), for any small initial condition of size € the
solutions are defined for long times T. > O(¢~")

o Gravity: M. Berti, R. Feola, F. Pusateri, '18,
If Kk =0, h = +oo then T. > O(¢~3)

@ KAM results: Existence of quasi-periodic solutions for

o Gravity-capillary: Berti-Montalto, '16,
o Gravity: Baldi-Berti-Haus-Montalto, '17,

solutions defined for all times, for "most" initial conditions



Almost global existence

Almost global existence

Theorem (M.B., J-M.Delort, 2017)

There is a zero measure subset N in |0, +oc[? such that, for any
(g, k) in 10, +0o[>\N, for any N in N, there is sy > 0 and, for any
s > sp, there are 2o > 0, ¢ > 0, C > 0 such that, for any ¢ €]0, &,

1 .
any even function (o, 1) in H3+4(']I‘,R) X HS_%(’]T,R) with

70l + ol -y <

the gravity-capillary water waves equations have a unique classical
solution, even in space, .
(m ) € C°( = Te, Te[, Hy (T, R) x H*74(T, R))
with
T.>ce N
satisfying the initial condition n|;—o = 10, V|t—0 = o




Almost global existence

Remark 1) Time of existence

@ N =1, time of existence T. = O(c 1), local existence theory,
Beyer-Gunther, Coutand-Shkroller, Alazard-Burg-Zuily

@ N = 2, time of existence T, = 0(5_2), S. Wu, Ifrim-Tataru, if
h = 400 there are no "triple wave interactions" + quasi-linear
modified energy

No solutions ki, ko, k3 € Z\ 0 of

|ke|2 & |ko|2 £ |k3|2 =0
ki tho £ ks =0

© For N > 2, to get time of existence T. = O(c~ "), we erase
parameters (g, k) to avoid multiple wave interactions

lonescu-Pusateri: x € T2, T. = O(e_%) for most values of (g, k)



N = 3, Berti, Feola, Pusateri, '18, x € T,
Gravity waves (x = 0) with infinite depth h = +00: T. = O(s3),
@ There are nontrivial 4-order wave interactions (Benjamin-Fair)

@ Nevertheless Zakharov-Dyanchenko, Craig-Workfolk proved
that the FORMAL 4-th order Birkhoff normal form Hamiltonian
i@gHgt\),,_- is integrable and well posed on H* ("null condition")

@ Using bounded changes of variables:

Poincaré-Birkhoff Normal Form for pure gravity WW

Brz = 0 HSY e + Xsa(2)
where X>4(z) admits energy estimates in H®

—> WE JUSTIFY USE OF THESE FORMAL NORMAL FORM
EXPANSIONS USED SUCCESSFULLY BY PHYSICISTS!

In same spirit that Lindsted formal series in celestial
mechanics were rigorously justified a-posteriori by KAM
theorem (Moser)



Almost global existence

Remark 2) Parameters

© Internal parameters: fixed equation! We can also think to
fix (k, g, h) and the result holds for most space "wave-length":
periodic boundary conditions x € AT, A € R.
The linear frequencies depend non-trivially w.r.t A

w = \/Ajtanh(hAj)(g + KA22)
@ We fixed h = 1. We can not use h as a parameter:

h— wj(h) = \/jtanh(hj)(g + rj2)

is not sub-analytic. The parameter h moves just exponentially
the frequencies:

w(j) = \/itanh(hj) = \/ljl(1 + O(e ™))



Almost global existence

Remark 3) Reversible and Hamiltonian structure

Algebraic property to exclude “growth of Sobolev norms"

@ Hamiltonian

@ Reversibility (Poincaré, Moser)

Dynamical systems heuristic explanation:



Almost global existence

Water waves

ur = iw(D)u + No(u, ), Na(u, ) = O(u?)

Fourier and Action-Angle variables (0, /)

u(x) = ez uje™,  u= \ﬁeiej
Sobolev norm |[u||3,s = >jen(l +72)°l;

Small amplitude solutions

Rescaling u +— cu
ur = iw(D)u + O(u?)
in action-angle variables reads

45 =efi(e,0,1), 26; =w(j)+egle,0,1)

angles 6; = w(j)t “rotate fast", actions /;(t) “slow" variables



Almost global existence

“Averaging principle":
The effective dynamics of the actions is expected to be governed by
atli =elf)e, ), (f)e 1) = Jp fi(e,0,1)d0

Necessary condition for QP solutions and long time existence
(f)(1) =0

Hamiltonian case: f(6,1) = (0pH)(6, 1)

— AJ%HWMMHzO

Reversible vector field (Moser)
20=g(l,0), L1=7£(1,0), f(I,0)oddind, g(/,0)even inf

= £(0,1)d0 =0
’]I‘OO




Almost global existence

The water waves equations (written in complex variables) are
reversible with respect to the involution

S u(x) — u(x)

that on the subspace

U(_X) = U(X) ) U(X) = ZjeZ Ujeijx = 2.jez ﬁeief'eijx ,

Moser reversibility

0,1 — (-6,

Alinhac “good unknown' which has to be introduced to get
energy estimates (local existence theory) preserves the
reversible structure, not the Hamiltonian one



Almost global existence

Remark 4) Global existence?

Question: Do these solutions exist for all times?
Probably not

Craig-Workfolk: for Kk =0, h = +oo the water-waves PDEs are not
integrable at the fifth order Birkhoff normal form



Expected scenario for nearly-integrable Hamiltonian systems

KAM Torus

Eltiptic FP

Hyperbalic FP

@ KAM results: There are many solutions defined for all times:
selection of “initial conditions' giving rise to global
solutions

@ Almost global existence: |t| < cye™N.

Exponential estimates?

© Arnold diffusion: What happens to a solution which does
not start on a KAM torus for times |t| > cye N7
Chaos? Growth of Sobolev norms?




Quasi-periodic solutions

Quasi-periodic solution with n frequencies of u; = X(u)

Definition
u(t,x) = U(wt, x) where U(p,x) : T" x T — R,

w € R"(= frequency vector) is irrational w - k #0, Vk € 2" \ {0}
= the linear flow {wt}+cr is DENSE on T”

@ Global in time

o If n =1 then U(wt, x) is time-periodic with period T = 27 /w



Quasi-periodic solutions

Periodic solutions: n=1
o Plotnikov-Toland: '01
Gravity Water Waves with Finite depth

o looss-Plotnikov-Toland '04, looss-Plotnikov '05-'09
Gravity Water Waves with Infinite depth
Completely resonant, infinite dimensional bifurcation equation

e Alazard-Baldi '15,
Capillary-gravity water waves with infinite depth
Quasi-Periodic solutions: n > 2

o Berti-Montalto '16,
Gravity-Capillary Water Waves

o Baldi-Berti-Haus-Montalto
Gravity Water Waves '17



Quasi-periodic solutions

Theorem (Baldi, Berti, Haus, Montalto, Inventiones Math. 2018 )

For every choice of the tangential sites S C N\ {0}, there exists

5> W—“ , €0 € (0,1) such that: for all §; € (0,€3), j €S,

Ja Cantor like set G¢ C [hy, ho] with asymptotically full measure
as & — 0, i.e. lime_yo|Ge| = hp — h1, such that, for any depth

h € G¢, the GRAVITY WATER WAVES EQUATION has a reversible,

quasi-periodic standing wave solution (n,1) € H® of the form

n(@jt, x) Z \/fjcos (@;jt) cos(jx) + o(\m)

JES

P(@jt, x) Z §Jw sin(@;t) cos(jix) + o(4/€])

Jjes

with frequencies &; satisfying &; — wj(h) — 0 as £ — 0.
The solutions are linearly stable.




Quasi-periodic solutions

Linear stability: perturbative Floquet theory

There exist coordinates
(¢, y,v) € TV xR x (HS N LZ)

in which the linearized equation d:h = JO,VH(u(wt))h reads
¢ = by
y=0
ve = ip®(D)v, v =73 gsvje

ijx

pe() € R, v =ipv;,

y() = yo,vj(t) = vj(0)e"T D" —> ||v(£) [ s = [ V(0) | rs: stability

0, {ip>°(j)}jesc = Floquet exponents |




Quasi-periodic solutions

@ Sharp asymptotic expansion of the Floquet exponents

m

1>(j) = m (j tanh(hy))? + ri(h)

1

2

where m: € R is a constant satisfying
2

1
m%N]w rp~¢g 2, CNO(|£|3)

@ Bounded change of variables ®(¢) : H* — H*, Vs> s



Ideas of Proof
|deas of Proof for long time existence: normal form

© Quadratic nonlinearity

ur = iw(D)u + Pa(u), Pa(u) = O(u?) J

Time of existence of solution with u(0) = eup is T. = O(¢ 1)

@ Cubic nonlinearity

ur = iw(D)u + P3(u), P3= O(u?) J

Time of existence of solution with u(0) = eup is T. = O(c2)

Poincaré-Dulac Normal form idea

Look for a change of variable s.t. the nonlinearity becomes smaller




Ideas of Proof

Poincaré-Dulac-Birkhoff

@ Perform change of variable to decrease the size of nonlinearity.
Required non-resonance conditions among linear frequencies
wi) £ w(2) Tw(iz) £wlis) # 0
@ At higher degrees of homogeneity —yet at degree 4—
there remains "resonant terms" P, which can not be eliminated
w(ji) —w(i2) +w(jz) — w(ja) = 0 for j1 = j2, j3 = ja
© Check that these resonant terms do not contribute to Sobolev
energy. Algebraic structure of PDE, i.e. Hamiltonian

@ For Hamiltonian semilinear PDEs —Birkhoff normal form—
Bambusi, Grebert, Delort, Szeftel '02-'07,

For quasi-linear PDEs this procedure gives unbounded formal
transformations, like u > u + £(0yu)?



Ideas of Proof

New procedure for quasi-linear PDEs:

@ First transform the water waves system to a diagonal,
constant coefficients in x system up to smoothing
remainders

@ Then implement a "semilinear" normal form procedure which
reduces the size of the nonlinear terms

© Check that the “resonant terms" left do not contribute to
energy estimates. Here Reversibility
for example

ilj = inUJ + i(zn a,,|u,,|2)uj

f(Su) =—Sf(u), S:uj— 1
— a, c R = |uj(t)|? constant



Ideas of Proof

Introducing Alinhac good unknown, paracomposition, and
paradifferential non-linear changes of variables, bounded in H®, we
transform (WW) into

Paradifferential Normal form for gravity-capillary WW

ur = i((1 + G(u))w(D) + G1(u)|DIY? + ro(u; D))u + R(u)u

where
Q w(&) = (£tanh(&)(1 + k€2))Y/?, linear dispersion relation
@ (3(u),(1(u) are real valued, of size O(u), constant in x,
Go(u) = fr} dx = f; (@(D)Ox(457))" o
Q ro(u; §) is a symbol of order 0 constant in x

@ R(u) is a regularizing operator: for any p it maps HS — H**?,
for p <'s— 3 large, | R(u)[u]l| s+ < Cllullpollull=
= we are back to a semilinear PDE situation



Ideas of Proof

Long time existence: energy estimates

The PDE
e = i((1+ G(u))w(D) + ¢ (u)|DIY? + Re(ro(u; D)) u
preserves for all times t € R the L2 and H norms since the symbol

(1 + G(u)w(&) + Ca(u)[€[*? + Re(ro(u; €))

is real (self-adjointness) and has constant coefficients in x

Reduce the size of Im(rp(u; €)) and R(u) up to O(||ul|V)

by Reversibility the normal form has norm || ||s as prime integrals
— the Sobolev norm ||u(t)|/ys of the solution with u(0) = O(¢)
remains bounded up to times |t| < O(s~")



Ideas of Proof

Thanks for your attention! ‘
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