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Hamiltonian systems, from topology to Arggﬂﬂﬁme
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COLLECTIVE MOTION IN A SYSTEM OF DISCRETE
PARTICLES Il

= A system of discrete particles interacting via EM field exhibits both collective
and individual particle behavior, e.g., plasma oscillation & Debye screening
[1]

= These phenomena can be discussed conveniently by representing particles
by delta functions in phase space—KIlimontovitch distribution function

» The initial value problem of the linearized, coupled equations for
Klimontovich distribution and EM field can be solved in 1D by Laplace

transform and inversion via Landau contour [2]

= Here we discuss another example of practical importance, a high-gain FEL,
in which the initial noise becomes organized into quasi-coherent collective
motion, giving rise to intense X-ray pulses known as SASE [3]

* For 3D, we use the normal mode expansion by Van Kampen [4.5]

1. D. Pines & Bohm, PR 85, 338 (1952)

2. KIK& R. R. Lindberg, FEL 2011

3. KUK, PRL 51, 1871 (1986)

4.N. G. Van Kampen, Physica XXI, 949 (1955)
5. K. M. Case, Ann. Phys. 7, 349 (1959)
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SELF AMPLIFIED SPONTANEOUS EMISSION(SASE)
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Linac Coherent Light Source at SLAC

X-FEL based on last 1-kmof existing linac

Injector ( )

Existing 1/3 Linac (1K) - .
(with rnodific ;:mrJn:) %

j JJ( rJ(l—'rJro'Jnrl)




EM wave amplification by e-beam in undulator

= When the EM wavelength satisfies the undulator condition, an electron
sees the same EM field in the successive period-> sustained energy
exchange

e

0 A3

= An e arriving at A, loses energy to the field (ev<E <0). Similarly the e-
at distance n/i,, n=1,2,... also loses energy. However, those at 1,(1/2 +n)
away gain energy.

= The electron beam develops energy modulation (period length A,).

AT

= Higher energy electrons are faster - density modulation develops

WM

= Coherent EM of wavelength 4, is generated-> “Free electron laser”



1D FEL pendulum equation for electron motion in
combined undulator & radiation field

10, o g dn;,
dz 1%

eH[J J ] -2 -2

— K K

X1 = : ; _ _

(2ygme)| | DT = (4 n 21{2) % (4 n 21{2)




3D VARIABLES

W

Reference electron

Variables:

— “Time”: Z

— Long. position: 0, =2xcAt, / A

— Long. momentum: n; = Ay, / y,

— Trans. position: X;

_ Trans. momentum: D; —X —dx /dz

8 Argonne &




3D pendulum equation including the
transverse betatron motion

g = 2k,n — %{pi 4 R‘%ﬂ’-i],
dn

o = ‘11.

dx

d P

* |In the transverse plane, the electrons perform betatron
oscillations, which can be approximated by harmonic motion.

 The longitudinal position @is delayed due to the transverse
action



Viasov-Maxwell formalism |

 The interaction between the electron beam and the FEL radiation can be
described in the framework of the Vlasov-Maxwell equations.

The e-beam is described in terms of a distribution function
F =F(6,n,x,p;z) in 6D-phase space. In view of the importance of electron
discreteness, we use the Klimontovich distribution:

k
F(8,n,2,p;2) = 126[9 0;(2)10[n — n;(2)]

(]2
€ i

x 0lx —x;(2)]o[p — p;i(2)],
n.: on-axis electron number density
« The distribution function is governed by the Vlasov equation
oF i dfl OF d:;rdF dx OF 5 dp OF
1z dz df d? an d',.:. x| dz dap

K.-J. Kim, PRL 57, 1871 (1986)
K.-J. Kim, Z. Huang, R. Lindberg, Synchrotrori’Radiation and FELs (Cambridge Press, 2017)

— i




Viasov-Maxwell formalism li

* In the small signal regime, the equation is linearized:

» Decompose the distribution function into a background distribution
function F and a small perturbation §F i.e. F = F + §F. We work with

the Fourier amplitude F, = (1/2n) [ d6(6F)e~"? and §F = [ dvE,e™".

> Treat E, and E,, for v =~ 1 as small compared to F.

« After some manipulation (which involves using the equations of motion), we
obtain a linearized Vlasov equation:

8 i . 5
PPy ' __k,--‘_
{':f;_'_j:I da R ap

: ky 2 2 9 -
i) —_ T Hcate &
+iv [_ﬂk‘u 5 (p° + kza }] } F, YiE Ejr*.r;rF
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Viasov-Maxwell formalism Il

* \We also use a paraxial wave equation for the radiation field:

J 4 iA JT-L 4 vg E _ II-"IE'_II13:I§
B2 1AV W A —13—26 |2 — x;(2)]
|_|_|
3D term giving rise to diffraction x2 = eK[1J] /2=y,

* In terms of the distribution function, the paraxial becomes

5‘ ?E

current as a momentum integral of E,

* These linearized Vlasov-Maxwell equations accurately describe the FEL
operation up to the onset of nonlinear, saturation effects.

12



Scaled equations
« We introduce a set of convenient scaled quantities

ﬂ ) X oK [1]]
= 2 k-;u, . = —. o o— o o A — T q 14y
ST = : EkupﬂE 4"rEmﬂEkup"E ’

. . [ k1 2k, p* 5

L= Ly Zklkurﬂ P=Pr 97 J‘ﬂ' f!f = ky i kg = Lﬂffgkup}

1/3 2 77211112 1/3
. _nmexaxe |7 (e K=[JJ]*n,.
Pierce-or FEL-parameter r= [{%ﬂ)g] = \ R2epyBma2

_ 1/3
C[11 o Kpn 2 2]
|87 Ia \1+K2/2) 2702

 The linearized FEL equations become

( i FANY; T’E

a_|_g % =3 oF ) a,(z; 2) [d?de fo(1), &, p: %)

d G, __df
(c}a = — ki ’")f“__ﬂ“ a7

\ H de Ij?_l_ﬁ,gi_ﬂ

phase derivative 7 i 13




Van Kampen’s normal mode expansion |

We seek the eigenmodes of the FEL equations in the form :

i [ f"’f{‘?:%}ﬂ} _ oined [ AE(J’} ]
fif{na‘r?pvz} ff{"t'.p! rJI:]

Each mode is characterized by a constant growth rate y; and a z-
independent radiation/density mode profile A;/F;
If one mode dominates-> Optical guiding

Hadm BPLad ] Optical guiding
profile -

/F:ayleigh >

length Zg

‘-Diﬂractinn without guiding

Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two
coupled relations for the growth rate and the mode amplitudes:
pe A + (—E + %ﬁ’ﬁ_) A¢ +1 [dpdn Fy

2p

: . ,L — 0.
peFo+iAcgl +{—vi+i(p- & - ke &)} 7
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Van Kampen’s normal mode expansion I

« The second equation can be solved by the method of characteristics:
_ 0
0 PR
- fo f dr Ae(Ry)e'Vo—HoT
a1)
=
* Inserting this into the first, we obtain the “dispersion equation” for the
growth rate (eigenvalue) and the eigenmode:

Fi =

Av 1 a5 4
(,uf— 2 +§vl) Ag()

0 -
—1 [dpdn [d'r E";“’é_“”‘_{;—{? Ae(2..) =0.

X (t)=x COS(]%,BT)—I—@/%@) Sil’l(]%g T)

« This equation can be solved numerically or by variational method (later)

15



Van Kampen’s normal mode expansion lli

 Eigenmode equation can be written as (M + M)‘IJ;; =0

* The matrix operator M is not Hermitian & eigenvalue K¢ >an be complex
« Van Kampen: introduce the scalar product and adjoint operator M'

(W, W) = [df drvazy + [d)?dﬁdnflufzu (M*\p;" LIJ) — (q;;',Mq;)
* The adjoint eigenvalue equation |
(i +MT) o) =o.
« We find that the adjoint dispersion equation is the same as the original
equation when the electrons momentum distribution is symmetric under
p—> —h> u, =
« Thus the Van Kampen orthogonality follows:
(e — 11x) (xp,j qu) = (\PZ,M\IJ@) = (M‘;‘qj,j,q;g) =0 > (‘IJ,;",\IJ;) = 8. (w;’,w)
* Thus the initial value problem is solved as
(o)
W(Z) = ZC@Q’@B_W'EZ — Z - Yo 1z
¢ ¢ (‘Pg : ‘Pe)

16



3D solution

- Using a specific f,, we obtain an explicit dispersion relation:

(H—E—I— ‘FE)A [dTTE Gy (3—ur
ﬂﬂh

20
1—|—3TI.:3::II .
o2 A2 (
2k507

) /dﬁ’ Alx(x,p,7)]exp | -

« There are four dimensionless parameters that affect the growth rate:

» 0, IS a quantitative measure of the diffraction effect

> ﬁxkﬁ is @ measure of the emittance effect

> &, represents the energy spread effect
» Av/(2p) is scaled frequency detuning

 The DR can be solved numerically—elaborate but faster than simulation
« Ming Xie (PAC1995, page 183) used a variational technique to obtain a

fitting formula that captures all these effects> FEL design became a simple
exercise on spread sheet !

17



Radiation energy (J)

Theory, simulation, and experiment
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Concluding remarks

X-ray FELs have so far have been mainly based on self-amplified
spontaneous emission, in which the initial noise due to particle discreteness
evolves into gain guided transverse mode

The system can be succintly discussed by the coupled Klimontovich-Maxwell
equations

The solution of the initial value problem of SASE including electrons’ betatron
oscillation and 3 D Maxwell equation in terms of Van Kampen mode
expansion is formally elegant and provides practical approach for numerical
analysis

The construction of an X-ray FEL theory, the application of the theory to the
design and interpretation of actual experiments have been one of the most
exciting and successful beam dynamics activities during the last several
decades
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