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OUTLINE

» Nontwist Hamiltonian systems
» Gyro-averaged Hamiltonian systems

» Mean field-coupled Hamiltonian systems



NONTWIST HAMILTONIAN SYSTEMS

Work done in collaboration with
J. M. Greene and P.J. Morrison
Special thanks to
R. de la Llave, H. Swinney, and |. Caldas
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MAGNETIC CONFINEMENT

dx dv
priahd mE——e[E(x)+v>< B(x)]

The dynamics of RE spans a huge range of time scales, from the
gyro-period t ~ 107 !sec to the observational time scales
t ~ 1073 — 1sec.



DISSECTING THE PARTICLE MOTION

v

The particle position and velocity can be decomposed as:

r(t) =1 + Ygyro + Ygc V(t) =V + Vgyro + Vgc

v

r| = ¢b and v = v b denote the parallel motion along the
magnetic field B = Bb.

(Ygyros Vgyro) is the gyro-motion around the magnetic field.
(fge, Vge) is the position and velocity of the guiding center

v

v

= Vgc, Vgc:VE"i'VVB“_Vn

with velocity drifts given by

ExB vZ Bx VB
Ve = Vyg = Frto ——5—
E B2 VB :szc B2

v? R
I RexB
V,=F— .
o RZB
> For parallel motion d¢/dt = v| and mdv|/dt = qE| — n0,B



PURELY PARALLEL MOTION
Hamiltonian dynamics of magnetic field lines

Neglecting gyro-motion and the velocity drifts, reduces the
dynamics to parallel motion along the magnetic field r = b
where d¢/dt = v| and mdv)/dt = qE — nud,B.

Neglecting Ej and 9yB, the orbit is entirely determined by the
dynamical system dx/ds = B(x(s)).

Modeling the tokamak as a periodic cylinder of length 27 Ry

dr do dz
E_Brv rg—Bé)a E_Bza
Assuming B, =constant, defining ¢ = r?/2, ( = z/Ry, and
usingV-B=0 —-B=V xA

a6 _oH  dy_ _OH

d¢ o’ d¢ 09
where H = —A,(¢,0,()Ro/B; is the Hamiltonian and
¢ —'time", (0,1) — canonical conjugate variables.



HAMILTONIAN INTEGRABILITY AND MAGNETIC CHAOS

» When H is independent of z (or when the dependence on z
can be removed by a change of coordinates), i.e. when the
magnetic field is toroidally symmetric, the field-line
trajectories are integrable.

» Simplest integrable case H = Hy(%))
_ oty
=50

» Magnetic perturbations, B = Bg + ¢B1, and loss of
integrability, “the fundamental problem of dynamics”

H = Ho(v) + eHi(v,6,¢)

what is the fate of the invariant circles, ¢ = 1)y, (magnetic
flux surfaces) under the perturbation eH; ?

0(C) = o+ Q)¢ ¥(z) =1, Q

» The answer to this question is critical for the understanding of
magnetic confinement of fusion plasmas.



Each invariant circle, ¥ = g, has associated a rotation
frequency, Q(vyo).

If Q is rational the orbit is periodic and if € is irrational the
orbit is quasiperiodic.

(KAM theory) For sufficiently small €, most of the
quasiperiodic invariant circles persist and are only slightly
deformed provided

00  9’Ho

o O0y2
This non-degeneracy condition is commonly satisfied in
standard Hamiltonian problems of the form H = K + V where

K is the K denotes the kinetic energy and V the potential
energy.

£0

Is it always the case that 0,,{2 # 07 In this condition general
enough? Are we discarding interesting, physically relevant
dynamical systems?



REVERSED SHEAR MAGNETIC FIELD CONFIGURATION AND
DEGENERATE HAMILTONIAN PERTURBATION PROBLEMS

> In the plasma physics context

_ &B@(r) 1

r B, q(r)’

where g(r) is the safety factor and Ry the major radius, and
the non-degeneracy condition reduces to

da(r)

o 70

satisfied by many toroidal magnetic field configurations.

Q(r)

» However, there are important cases, known as reversed-shear
magnetic field configuration, for which this is not the case.
» The study of magnetic perturbations in reversed-shear

configuration lead to the study of perturbation Hamiltonian
problems outside the standard KAM theory



AREA PRESERVING MAPS

Area preserving maps

o (X"+1, yn+1)
9 (x", y")
For the magnetic field lines problem, the stroboscopic
Poincare map, (6,)(¢o) — (0,¢)(¢o + 27),is an area

preserving map because the Hamiltonian evolution is a
canonical transformation.

M(Xn’yn) — (Xn—|—17yn—i-1)7 -1

In the integrable case
z/}n—i-l — wn7 9n+1 — " + 271_Q(wn+1)

Finding an analytical expression in the presence of a
perturbation is in general not possible. But, insightful models
capturing the fundamental aspects of the dynamics can be
constructed.



Consider the perturbed area preserving map

T = g (67, ™), 0T = 07 2mQ(y ") (07, ")
of n of
oon 8’¢J"+1

Like in the case of flows, each invariant circle, " = g, of the

integrable map has a rotation number 27 (1)g).

=0

(KAM theory) For sufficiently small €, most of the
quasiperiodic invariant circles persist and are only slightly

deformed provided
dQQ
dw”"‘l 7& 0

This non-degeneracy condition known as twist condition in
typically satisfied by a large class of area preserving maps
known as twist maps.

Is the twist condition general enough? Are we discarding
interesting, physically relevant dynamical systems?



THE STANDARD MAP
A prototype model for the transition to chaos in twist maps

» Motivated by the problem of magnetic confinement of fusion
plasmas, Chirikov and Taylor proposed the standard-map for
understanding the fundamental aspects of the transition to
magnetic field line chaos.

» Based on the assumption of monotonicity of the g profile they
propose 27 = 11

> Based on the observation that radial magnetic field
perturbations are typically of the form
0By =), amn(?0) cos(mb — n(), they proposed a simple
harmonic p7erturbation of the form vy ~ ksin"

wnJrl — wn + ksinen7 0n+1 — " + wnJrl



THE STANDARD NONTWIST MAP
A prototype model for the transition to chaos in nontwist maps

» As mentioned before, reversed shear magnetic configurations
exhibit a non-monotonic g profile.

» That is, the Hamiltonian describing fields lines in this case is
in general degenerate, dQ2/dw # 0, and the corresponding
area preserving map violates the twist condition, Q/,11 # 0.

» The standard nontwist map
,¢n+1 _ wn + bsinG”, 6n+1 _ 9” + 3[1 _ (¢n+1)2]

was proposed to capture the fundamental aspects of the
transition to chaos in systems that violate the twist condition.



TRANSITION TO CHAQOS

The transition to chaos, i.e. the destruction of invariant
circles due to perturbations, is a fundamental problem in the
theory and applications of dynamical systems.

In the context of plasma physics this problem corresponds to
the destruction of magnetic surfaces and the loss of
confinement.

In the fluid mechanics context (to be discussed later) this
corresponds to the destruction of transport barriers and the
onset of global fluid mixing.

Some fundamental questions:

» Given a Hamiltonian system depending on a set of parameters
A; and an invariant circle with a rotation rotation number w,
what is the region in the parameter space for which the
invariant circle exists?

» What are the geometric properties of the invariant circle at
criticality?

» How universal is the transition to chaos?



TRANSITION TO CHAOS: CRITICALITY AND SCALING
The standard map universality class

¢n+1 _ wn + ksin 0”, 9n+1 _ 9” + wn—&—l

The last invariant circle has w = v = (1 4 1/5)/2 (the golden
mean) and the critical parameter is k. = 0.971635406. ..
[Grenne, 1979].

The Residue criterion [Grenne, 1979] allows to determine the
fate of a given invariant circle by looking at the stability
(residue) of the nearby periodic orbits.

At criticality, the residues (on the dominant symmetry line)
converge to Rc = 0.25... [Greene, 1979] and the invariant
circle exhibits fractal structure with scaling parameters
a=1.4148... and § = 3.0668... [Kadanoff-Shenker 1981,
1982].

Renormalization theory [MacKay, 1982] provides a framework
to understands these results and explain why they are
universal for a very large class of maps.



THE. STANDARD NONTWIST MAP
Shearless circles exhibit a remarkable resilience to perturbations

™ =" 4 bsin§”,

9n+1 _ 0n + a[l _ (¢n+1)2]

This explains the robustness of magnetic flux surfaces in reversed

shear configurations, and the existences of transport barriers in
non-monotonic shear flows in plasmas and fluids.



THE STANDARD NONTWIST MAP
Residue criterion gives critical parameter values for breakup of
golden mean shearless circle

77bn-i—l — ¢n + bsin 9n7 9n+1 L a[l . (¢n+1)2]
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THE STANDARD NONTWIST MAP
Golden mean critical shearless invariant circle exhibits self-similar
scaling different to the standard map universality class

(x,y) = (ax, By),
(ac, be) = (0.686049, 0.742493131039)

o =321.92

B = 463.82
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THE STANDARD NONTWIST MAP
Golden mean critical shearless invariant circle exhibits residue
convergence different to the standard map universality class

Residues converge to a 6-cycle {Fy, Fa, F3, Fa, Fs = F», Fs}
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THE STANDARD NONTWIST MAP
The transition to chaos of the shearless invariant circle corresponds
to a new universality class

Maps withour
unsiable manifold of CFP

‘odimension-one
stable manifold,

Basin of atiraction
of CFP

RGO(CFP)=CFP

Critical Fixed
Point

New universality
class for non-twist
maps

RGO(TFP)=TFP
Trivial Fixed Point



BACK TO GENERAL PARTICLE MOTION
IN MAGNETICALLY CONFINED PLASMAS

v

The particle position and velocity can be decomposed as:

r(t) =)+ rgyro + rgc, v(t) = V|| + Vgyro + Vge

v

r| = ¢b and v = v b denote the parallel motion along the

magnetic field B = Bb.

Yoyros Vayro) 1S the gyro-motion around the magnetic field.
gyros Vgy gy g

Yoc, Vo) is the position and velocity of the guiding center

(rge: Vge) p y guiding

vy

dr = Vgc, Vgc:VE+VVB+Vf@

with velocity drifts given by
ExB vZ Bx VB
Ve = Vyg=Frto ——5—
E B2 VB :szc B2

vZ R

I RexB
V,=F— .
" T RZB
> For parallel motion d¢/dt = v| and mdv|/dt = qE| — 10,B




HAMILTONIAN DYNAMICS OF E x B MOTION

> Neglecting gyro-motion and the parallel motion along the
magnetic field reduces the dynamics to the perpendicular drift
motion.

> Neglecting the magnetic field gradient and curvature

drge ExB
@ Ve T VET TR

» Assuming B = Bpé, with By = constant and writing

E=-Vo¢
G _ o 4 _oH
dt Oy’ dt  Ox

where H = ¢(x, y, t)/By is the Hamiltonian and (x,y) —
canonical conjugate variables.



HAMILTONIAN INTEGRABILITY AND E x B chaotic transport

» WhenH is independent of t (or when the dependence on t can
be removed by a change of coordinates), i.e. when the electric
field is time independent, the E x B motion is integrable

» Simplest integrable case E = Ep(x) &y, i.e. H = Ho(x)

OH, E
x()=x0, y=y+Qx)t, Q=_2= o(x)

Ox B

» Electrostatic perturbations, E = Eg + €¢E1, and loss of
integrability, “the fundamental problem of dynamics”

H= HO(X) + EH]_(X,y, t)

what is the fate of the invariant circles, x = xp under the
perturbation eH; 7

» The answer to this question is critical for the understanding of
E x B transport in plasmas.



E x B SHEAR AND DEGENERATE HAMILTONIAN
PERTURBATION PROBLEMS

> In the E x B plasma physics context

0= 8H0 Eo(X)

Ix B

and the non-degeneracy condition reduces to E/(x) # 0 which
is not a generic condition, since in general the electric field
can have any dependence on x.

> In this case the E x B velocity, Vg = [Eo(x)/Bo]é, and the
nondegeneracy is equivalent to the non-vanishing of the shear

_ dVe-g,
- dx 70

g

» The study of electrostatic perturbations in shearless E x B
flows is degenerate perturbation Hamiltonian problems



SHEARLESS TRANSPORT BARRIERS IN E x B TRANSPORT

» Formally this problem is identically to the previously discussed
reversed shear magnetic field line problem.

» Assuming a drift-wave electrostatic perturbation of the form
P1(x,y,t) = > €jpj(x) cos ke(y — ¢;t) this problem can also
be reduced to the standard nontwist map

Xn+1 = x" 4+ bsiny", yn+1 — yn + a[l _ (Xn+1)2]
12 -
| |
10 | !
| |
8 -
— | |
% 6 I I
> | | y
4 | |
| |
2 I I
| |
0 | |
3 2 4 0o 1 2 3 .
X -05 X 05

» Shearless E x B trajectories are very resilient to breakup due
to perturbations.



A FLUID MECHANICS INTERLUDE

The Hamiltonian description of E x B transport is equivalent
of the description of transport in 2-D incompressible flows
2-D, V = V&, + V,&,, and incompressibility, V -V = 0,
implies V = &, x V1, where ¢(x, y, t) is the streamfunction.
The equations of motion of a passive tracer, dr/dt = V(r)
reduce to the Hamiltonian system

dx  OH dy OH
dt 9y’ dt  dx
where H = 1) is the Hamiltonian and (x, y) — are canonical
conjugate variables.
In this case, the simplest integrable problem corresponds to
transport in a parallel shear flow V = V&, and the
non-degeneracy condition requires

@ o 82H0 - _dVo(y)
dy  9dy? dy

which in general is not satisfied

£0



TRANSPORT IN ZONAL FLOWS IN GEOPHYSICAL FLOWS

» The 2-D incompressibility assumption is a good approximation
in the case of rapidly rotating fluids

» Non-monotonic zonal flows (“jets"), i.e. shear flows with
regions of zero shear, dV/dy = 0, for some value(s) of y, are
usually found in the atmosphere and the oceans

» Shearless transport barriers are very resilient to breakup due
to perturbations.

Chaotic mixing region

Shearless
transport
barrier

Fluid
transport
barrier

Nontwist Hamiltonian

Transport model
[del-Castillo-Negrete,
Morrison, (1993)]

Rotating anulus
Experiment

[Swinney, Sommeria, Meyers

et at (1989)] Rossby waves



GYRO-AVERAGED HAMILTONIAN SYSTEMS

Work done in collaboration with
J. Martinell, J. Fonseca, |. Caldas, N Kryukov, I.M. Sokolov
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BACK TO GENERAL PARTICLE MOTION
IN MAGNETICALLY CONFINED PLASMAS

v

The particle position and velocity can be decomposed as:

r(t) =)+ rgyro + rgc, v(t) = V|| + Vgyro + Vge

v

r| = ¢b and v = v b denote the parallel motion along the

magnetic field B = Bb.

Yoyros Vayro) 1S the gyro-motion around the magnetic field.
gyros Vgy gy g

Yoc, Vo) is the position and velocity of the guiding center

(rge: Vge) p y guiding

vy

dr = Vgc, Vgc:VE+VVB+Vf@

with velocity drifts given by
ExB vZ Bx VB
Ve = Vyg=Frto ——5—
E B2 VB :szc B2

vZ R

I RexB
V,=F— .
" T RZB
> For parallel motion d¢/dt = v| and mdv|/dt = qE| — 10,B




GYRO-MOTION EFFECTS ON E x B TRANSPORT

> In the previous discussion we neglected gyro-motion, parallel
motion, magnetic field gradient and curvature, and reduced
the dynamics to
dx OH dy OH

dt Oy’ dt  Ox
where H = ¢(x, y, t)/By is the Hamiltonian and (x,y) —
canonical conjugate variables.

» One way to approximately incorporate the dependence on
gyro-motion due to finite Larmor radius effects is to to
substitute the E x B flow by its value averaged over a ring of
radius p, where p is the Larmor radius

dx 0¢ dy /09
i (%), a5,

where the gyroaverage, (),, is defined as

1

2w
<\U>95/ V (x + pcosh,y + psinf) do .
27T 0



GYO-AVERAGED MODEL

» Gyro-averaging of the Hamiltonian:
¢ = tanh x—nx+eisech®x cos (kly)+egsech2x cos (koy — wt)

leads to

% = 61k1/k17p(X) sin kly + 62k2/k27p(X) sin (k2y — wt) s

% = lop(x) —n —2e1Kiy p(x) cos kiy — 22Ky, ,(x) cos (koy — wt) .

where

lep(x) = 717/0 sech? (x — pcosf) cos (kpsin ) db ,

Kip(x) = 71r/0 sech? (x — pcosf) tanh (x — pcos ) cos (kpsinf) df .



ZONAL SHEAR FLOW BIFURCATION

08
06
0.4

0.2 01

For p = 0 the zonal flow exhibits a maximum at x = 0. However
for p > 1.33... there is a bifurcation: a velocity minimum forms at
x = 0 along with two symmetrically located velocity maxima.



SHEARLESS AND RESONANCES ZONES

9 (¢o)o
Ox?

0
<§§>6 1= ()

= —2Koo(x)  R(x;p,m) =

oo(x) =

fess  black=resonance 1=0.1,0.2,0.3, 0.4,0.5,0.6

The red curves correspond to og(x; 7, p) = 0. The black curves
correspond to R(x; 7, p) = 0 from left to right n =0.6, 0.5 0.4, 0.3,
0.2 and 0.1.

This introduces highly nontrivial dependences of the phase space
topology on the gyro-motion.



RESONANCE TOPOLOGY

In nontwist maps, each mode creates two resonances and there is
separatrix reconnection

TWIST NONTWIST
: AT 2

Vo)

Separatrix reconnection has been extensively studied in nontwist
systems, here we discuss its dependence on gyro-averaging



HETEROCLINIC-HOMOCLINIC RECONNECTION
AND DIPOLE TOPOLOGY

Contour plots of gyro-averaged Hamiltonian with p = 0 (top left),
p = 1.5 (top right), p = 1.7 (bottom left) and p = 2 (bottom
right). The bold black line is the separatrix.




FIXED POINTS CREATION AND RECONNECTION

Left figure:x = x, fixed points as function of p. The solid-black
(dashed-red) curve tracks x, for y, =0 (yix = 7/k1).

Right figure: Top-left p = 1.5 (region 1); Top-right p = 2.204
(boundary between region | and region |l) Bottom left p = 2.3312
(region II). Bottom right p = 2.43(region II)



FIXED POINTS ANIHILATION AND FLOW RECTIFICATION

O SR

A o N L

w(

\ |

Left figure:x = x, fixed points as function of p. The solid-black
(dashed-red) curve tracks x, for y, =0 (v, = 7/k1).

Right figure: Top-left p = 2.75 (region Il). Top-right p = 3.0748
(boundary between region Il and region IIl). Bottom left p = 4.464
(boundary between region Il and V). Bottom right p = 6 (region
V).



DOUBLE SEPARATRIX RECONNECTION
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Left figure:x = x, fixed points as function of p.

Right figure: Top-left panel: double heteroclinic topology.
Top-right panel: double homoclinic topology. Bottom-left panel:
double heteroclinic-homoclinic topology. Bottom-right panel:
double dipole topology.



GYRO-AVERAGE INDUCED CHAOS SUPPRESSION

Poincare plots for: Top-left panel, p = 0. Top-right panel, p = 0.5.
Bottom-left panel, p = 0.75. Bottom-right panel, p = 1.
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SHEARLESS CURVE RECOVERY DUE TO GYROAVERAGING

Poincare plots showing how the increase of the Larmor radius leads
to the recovery the shearless curve going through
(x,y) =~ (—0.75,0), and the suppression of global transport across

the resonances.




THRESHOLD FOR SHEARLESS BARRIER DESTRUCTION IN
(p.€) PLANE
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GYRO-AVERAGED AREA PRESERVING MAPS

» Gyro-averaged maps can be constructed starting from the
“kicked-rotor” type Hamiltonian

b= do(x)+ A Z cos (ky — mwot)

m=—0o0

» Applying the gyro-averaged operator

(@) = (do(x))g + 27TAAJ0(I€,0) COsKy Z d (wot — 27m)

m=—0o0

where Jg is the zeroth-order Bessel function.

» As in the standard case, the equations of motion can be
formally integrated over a period of the perturbation to get
the discrete area preserving map:

I = J" 4+ Ao(p)sing”, 0" =0"+Q (S
where J ~ x, 0 ~ y, and Q ~ d (¢o(x)) /dx.



GYRO-AVERAGED STANDARD MAP
> In the standard-map twist case Q(x) ~ x

I = I ke sin0”, 97T =" 4
where ke depends on the Larmor radius p according to

ketr = kJo(p) -

» When the Larmor radius can be neglected, ke = kJo(0) = k.
However, in the general, each particle, “sees” a different

perturbation amplitude, kes, which vanishes at the zeros of Jg




GYRO-AVERAGED STANDARD NONTWIST MAP

» In the standard nontwist case Q(x) ~ x?

J7L = 7 bJg(p)sin 6"

g+l — gn s Kl_ ﬁ;) B (Jn+1)2:|

where p = pk, and in the p = p/L.



GYRO-AVERAGED STANDARD NONTWIST MAP

Left panel, break-up diagram in (p, b) plane for p =0 and a =0.1.
Middle and right panels, Poincare plots for cases A and B.

Left panel, break-up diagram in (p, a) plane for p =0 and b = 1.5.
Middle and right panels, Poincare plots for cases A .and B.



GYRO-AVERAGED STANDARD NONTWIST MAP

> In a plasma the particles exhibit a statistical distribution of
Larmor radii, e.g. a Maxwellian distribution

p 1/ 5\
f(p) = 5 exp | —5 (A>
( ) P%h [ 2 \ Pth

> The previous results determining the fate of the shearless
curve for a given value of p need to be extended to a
statistical distribution of Larmor radii.

» Given a distribution of Larmor radii, f(5), the probability
distribution of the effective perturbation parameter
bJo(p) = by is

1/ p)\°
= 22y,
%h EE; ’J/ [ 2\ Pih ]

where I, = {po, p1, ...} is the set of non-negative solutions of
v = Jo(pi)



GYRO-AVERAGED STANDARD NONTWIST MAP
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This probability distribution of + provides the basis to study the
probability distribution of confinement.



MEAN-FIELD COUPLED HAMILTONIAN SYSTEMS

Work done in collaboration with

M.C. Firpo, A. Olvera and R. Calleja, D. Martinez-del-Rio, L.
Carbajal, A. Vulpiani, G. Boffetta, J. Martinell
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LOW DEGREES-OF-FREEDOM HAMILTONIAN SYSTEMS

» The simplest Hamiltonian systems with nontrivial (chaotic)
dynamics are the well-understood 1-1/2 degrees-of-freedom
systems

p
H(q7p7 t) = % +¢(q7 t)‘

» A canonical example is a charged particle in 1-d in a

time-dependent external electrostatic field

Chaotic motion in a two-waves field

¢ =cos(kx —w, t) +cos(k,x — w, t)

AL

» When the spatial dimensionality increases, d = 2, 3, this
single particle problem complicates but relatively speaking
(i.e., compared with what comes next) is a tractable problem.




VERY LARGE NUMBER OF DEGREES-OF-FREEDOM

» A canonical example is the (extremely difficult) N-body
problem in which each particle interacts with each other, e.g.

N

2
Hiaipint) =Y 2’% +Y ollai — ql).

i=1 i<j

» The main motivation underlying mean-field models is to find a
tractable description of intermediate complexity between the
N-body problem and the dynamics in an external field.

Particles in external field N-body problem
. Self- . . ()
External field elf-consistent field
? °®
°® !
o
] ° o <4 > °
° ° Mean-field [¢]
e © description @

» Among the key problems we would like to study is chaos and
integrability in very large d.o.f. systems.



MEAN-FIELD MODELS

» Like in the external field problem, in the mean-field
description all the particles “see” the same field

N

2
H(q,-,p,-, t) = Z 2’;,7’7 + Zé(qi;)\) .

i=1
» But, like in the N-body problem there is a coupling between
the particles that feeds-back onto the mean-field

A=D(q1,92,---qn) -

Mean-field description
® o O o
®

\VAVAY

External field Self-consistent ﬁelc.
@ &)
® ° ° [ \
)
) o ° o
°® Mean-field
°® @ L]

@
N-body problem

Particles in external field



THE SINGLE WAVE MODEL

» The mean-field model of interest here is the so-called
Single-Wave-Model (SWM) which is a Hamiltonian system

consisting of an ensemble of N-particles in one-dimension
dx; OH du;  OH

dt — du;’ dt — Ox’

with a single-wave potential Hamiltonian

N 2
u . .
H(qi, pi, t) = Z [2" —a(t)e™ —a*(t)e ’Xk} .
k=1
> In this model the mean-field coupling determines the time
evolution of the single-wave potential amplitude from

where U and 'y, k=1, 2, ... N are constants.
[Onischenko, et al. (1970), O'Neil, Wilfrey and Malberg (1971)]



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Weakly nonlinear theory provides a systematic derivation of
the previously stated SWM:

of  Of 0pOf N 4 k) ami
S rus P 0, p=a(t)eh + (1)e

d 1 27 00
d—j—an:iZ O dx/_ooduf(x,u,t).

and the corresponding discrete particle formulation

ka duk 8¢ da . i _
—_— = _——— _ = = — r Xk .
de ko dt ox’ g Y NZ ke

as a universal model for marginal stable systems.

Most importantly, going beyond the original formulation, the
theory extends the SWM to f > 0 (clumps) and f < 0 (holes).
In the discrete case this corresponds to ', > 0 and ', < 0.
[dCN, Phys. Plasmas, 5 (1998); dCN, CHAQS, 10 (2000)]



THE SINGLE WAVE MODEL:
N + 1 HAMILTONIAN FORMULATION

» Defining
a=vJe ™, pe=Tuy,

the SWM can be equivalently written as an N+ 1,
particles-+field, Hamiltonian system

o _OH - dpe _ OH
dt _apk7 dt an’
o _om A _ o

da  0J’ da 09’

in which (xk, px) are the canonical coordinates of the N
particles, (0, J) are the canonical coordinates of the
mean-field, and

1 p;

H= Z 2?7—2Fj\ﬁcos(xj—6) - UJ.



MACROPARTICLE VORTEX FORMATION IN
THE SINGLE WAVE MODEL

4 (a) (b)

[Tennyson, Meiss and Morrison, Physica D 1994.]
The system relaxes into a time asymptotic periodic state where
only few collective degrees of freedom are active.



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave model

Self-consistent periodic evolution
of wave mean field
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Separatrix “breathing” due to self-consistent
wave-particle interaction



ROTATING DIPOLE COHERENT STRUCTURES AND
SELF-CONSISTENT CHAQOS

Rotating coherent _ |
dipole

— Coherence
maintained by
@ KAM surfaces

Poincare section
of time periodic
self-consistent
mean-field




ASYMMETRIC DIPOLE STATE

4 = . . e

g @ @ MAVAL#U"V““VH\M \\“vﬂvw

e D. del-Castillo-Negrete, Plasma Physics and Controlled Fusion 47, 1-11
(2005).



STANDARD MEAN FIELD MAP

dxj = i=12 N n+l n n+l
a7 IS X =X+ Y,
particles
d n n+ n n+ . n
% = 2p()sin [x, - 0()] =yt —Kk"" sin(x) - 6")
(1 e n\2 2
K =)+ () 4

d i . -i . —ix, mean n+l n l (9""
d—t(pe9)+zUpe8=zEer fied < |07 =0 T 29"

k

\

e D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).




STANDARD MEAN FIELD MAP

y
0 .0

Xy 5 Y, ) Particles

initial positions
5
k=12,.... 2x10
X
Particle’s
“charge” Y«
Mean field

initial condition 90 =0 KO =0.001




BEAM-PLASMA INSTABILITY AND COHERENT STRUCTURE
FORMATION IN THE STANDARD MEAN-FIELD MAP

e D. del-Castillo-Negrete: CHAQS, 10, 75, (2000).



NONTWIST MEAN FIELD MAP

- 2
1_ . n+1
(rkpk ) ] ’

pitt = pp— 21TV Jrtsin (x] — 0"),

k=1,2,...N

1
Tt = X +a

N
ntl n_ B T n__ pnn
ol = 0" Ur szlrkm(xk 0%),
N
I = 7 2rV LS T ysin (xf — 07), (1)
k=1

e L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22
013137 (2012).



NONTWIST MEAN FIELD MAP
Period-one coherent structures

(@)
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NONTWIST MEAN FIELD MAP
Period-two coherent structures
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation

_i=50 i=74 =03




NONTWIST MEAN FIELD MAP
Self-consistent separatrix reconnection in the mean-field map

@  «"=0.0077 () «"=0.0847 ©  x"=0.0428

e L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22
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