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Two-Dimensional Examples of the Jacobi
Maupertuis Metric

MSRI, November 2018

Rick Moeckel, University of Minnesota
rick@math.umn.edu



Longstanding Goal: Understand the geometry of the Jacobi-Mauptertuis
metric arising from problems in celestial mechanics. Start with low
dimensional cases where we can draw pictures.

Lagrangian system of two degrees of freedom with fixed energy, h

Planar Kepler problem
Collinear three-body problem
Isosceles three-body problem

Riemannian metric on two-dimensional configuration space — a surface

*Get intuition about the geometry for its own sake

*Visualize the surfaces, e.g., by embedding in R3
*Use known properties about the orbits in phase space to understand geodesics

*Use Riemannian methods for geodesics to get existence proofs for new orbits



The Jacobi-Maupertuis Metric

Let
gelUd C R" U = Configuration Space

Consider a Lagrangian system on phase space U x R" of the standard form:

L(g,v) = 5[0l + U(a)

I*

|v]|* = Kinetic Energy Metric

U(q) = Minus Potential Energy

Fix an energy level

B(g,0) = 5llell> ~ U(a) = h

and define the corresponding Jacobi-Mauptertuis metric
g(v,v) = 2(U(q) + h)|lv[|*.

It’s a Riemannian metric on the Hill’s Region

H(h) = {geU:U(q) +h>0).



Euler-Lagrange for . «—3% Geodesics of g

Suppose the metric looks like |[v||* = v - Mwv for M a symmetric matrix. Let
p = L, = Mv. Then the Euler-Lagrange and energy equations for L(q,v) are

Mqg=p
p=VU(q)

15eE
§HCIHQ —~U(g)=h

On the other hand, unit speed geodesics for g satisty the Euler-Lagrange

equations for
L(g,v) = sg(v,v) = (U(q) + h)|lv|*.

Let p= (L), =2(U(q) + h)Mv. Then

Al p
M= T TRy
Al MU Gg)
P T 2T () + k)

2(U(q) + h)ll¢'I* =1

Just a change of timescale:

2U(q) + 1)



'Two dimensional examples considered here

Kepler problem: 1 1
2

Isosceles 3BP:

1 27713

g =2(U(z,y) + h) (1 dz® + pady?)
H(h) ={(z,y) : x> 0,U(z,y) +h >0}
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The Kepler Surtaces

1 1
U(CC,y): \/x2—|—y2 s ;

I 1
g_2<\/x2+y2 +h> (d$2+dy2)=2<;+h) (dr? + r? d6?)

Central Force Problem — Rotation Invariant

The well-known solutions sweep out conic sections in the configuration space R2

1.0+

- Positive energy: Hyperbolas -+ h=1
- Zero energy: Parabolas * h=0 !
- Negative energy: Ellipses * h=-1 f

[ L 7 I N ! I I ! | ! L I I I [ I N T :
-2.0 =15 -10 -0.5

—-0.5 -

Geodesics for the Jacobi-Mauptertuis metric AU

=40

The Jacobi-Maupertuis metric describes an “abstract surface of revolution”.

Question: Can we find an embedding as a surface of revolution in R3 ?

SN0 e WO
045 110



Embedding the Kepler Surfaces

1 1
Kepler : g = <— + h) (dr? 4 r* db?) = (— + h) dr® + r(1 + hr) d?
r r

RS S e = dp? + dz° + p* db?

Embedding as a surface of revolutions p = f(r), 2 = g(r) which gives the metric
g=(f'(r)?+d(r)*) dr* + f(r)*do>.

We must have

f(r) =+/r(1 + hr) (1) +4'(r) = %+h

which gives
3+ hr

jwyz4mr+my

Just solve this equation for g(r) to get an embedding.

R.M.: Embedding the Kepler problem as a surface of revolution, to appear Reg.Ch.Dyn.
Volume 23, Issue 6, 2018



h=o0 Kepler Surtace is a Cone

For energy h = 0 we have an embedding in cylindrical coordinates (p, 8, z) where

ol R Lt =g ()| = /BT

so the generating curve is given by the line

z:\/gp

The surface is a cone. The opening angle is 1t/ 3.

You can make one from a sheet of paper by gluing
the edges together.

Straight lines on the paper go to geodesics on the
cone.

\ Note: Collision singularity becomes a cone point on the surface.




Positive Energy Kepler Surface

Next suppose h = 1. We find p = f(r), z = g(r) where

] r t(r) 9
I =VraTn  en= [ \/ ) 2 dt

Vi /([ =3)(2 +1)

This is an elliptic integral which can be evaluated with some effort to give

3 4
g(r) = Su—2B(u, k) + 2dn(u, k)scl(u. k) where ne(u,k)=1/1+ g
where dn(u, k), scl(u, k), nc(u, k) are Jacobi elliptic function and E(u, k) is the
Jacobi elliptic integral of the second kind with modulus k = %

Geodesics correspond to
hyperbolic Kepler orbits




Negative Energy Kepler Surface

Finally, suppose h = —1. The Jacobi-Mauptertuis metric is

r

1
g =2 (— — 1) (dr? 4 r* d6?)

with Hill’s region

H(—1) = {r < 1} = unit disk.

Clearly the solution for g(r) can only be valid for 0 < r < 2.

It is not possible to embed the entire surface !

There are problems near the Hill boundary {r = 1}.

) Elliptical Kepler orbits with eccentricities e < 1/2 appear as
i T geodesics on the surface of revolution. The others pass too
YT It e 1o e close to the Hill boundary and hit the edge of the embedded

part of the surface.

-0.5



More Non-Embedding Results

Further investigation reveals that the negative energy Kepler surface cannot be embedded
as a surface of revolution in

 Euclidean space Rn for any n
- Around sphere Snfor any n
« Hyperbolic three-space

In each case, there is a problem near the Hill boundary r = 1

For example, in the hyperbolic case ¢(r) would satisfy
dr(l —=r)(r* —r—a 2)g'(r)* + 4r(1 — r)(2r — 1)g(r)g'(r) + (3 — 4r)g(r)*> = 0.
For 7 ~ 1 it turns out that ¢'(r)/¢(r) would have to be nonreal.
How about an embedding in three-dimensional Minkowski space ?
Minkowsk? : Mink = dp2 + ,02 dh? — dz?
Setting p = f(r),z = g(r) gives

O =Vid-n  g0F =

The sign change on ¢'(r)? means we can embed the part with 2 < r < 1 but
not the previous part !

There is an embedding in four-dimensional Minkowski space, but this seems like cheating.



Even More Non-Embedding Results

The lack of a symmetrical embedding in Euclidean space turns out to be a
general property of central force problems when there is a Hill boundary. For
example, one cannot even embed the Jacobi-Maupertuis metric of the harmonic
oscillator with h = 1/2 as a surface of revolution

ot L = (1 — 7“2) (dr? + 1% §67)

Theorem: Suppose U(r) is an analytic function such that r = rog > 0 is a
boundary circle for the Hill’s region H(h) = {U(r) + h > 0}. Then there is
0 > 0 such that the Jacobi-Mauptertuis metric on the part of the Hill region

with 0 < |r — 19| < 0 does not admit an embedding as a surface of revolution
in R3.

Proof idea: A local analysis of a hypothetical embedding p = f(r),z = g(r)
shows that the ¢’(r)? < 0 near r = rg.



Minimal Geodesics for the Isosceles 3BP

Isosceles 3BP:

1 )
U(az,y)z——l— ng m1 =mo =1 .m3
X ‘%—I—yQ
y
g =2(U(z,y) + h) (1 dz* + pady?) il il
H(Rh) = {(z,y) : z > 0,U(z,y) + h > 0} i

Note: The conformal factor 2(U(x,y) + h) is infinite at double and triple collisions and it’s O on the
Hill boundary. Nevertheless we want to consider solutions which hit these sets.

y

5 10
double collision, x=0

i

triple coIIision/ j

x=y=0

Hill boundary

This is a negative energy case.

For h = 0 we can avoid the Hill
boundary !

7 Motivated by lots of recent work on action minimizing
£ solutions of the N-body problem by Maderna, Venturelli,
Terracini, Barutello, Sanchez-Morgado, Montgomery, ...




Blow-up of Triple Collision

10

triple collision

x=y=0
Blow-up Triple Collision i
Blown-up Hill’'s Region
IS rcos 0 ik rsin 6 double collision :
VT V2 > Hill boundary
! ,
g = ~V(0)(dr® + r*df?) \ \
i |
ﬁ(h):{(r,e):rzo,—ggegg} “
Shape potential V' (0) such that U(z,y) = 2V (0) S R
/M1 2m
Vig)= Y2l 4 %

4111 o o 10 Hriple collision’f=0  '° i3
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Orbits in Phase Space vs. Geodesics in Configuration Space

Two approaches to the problem:

- Qualitative study of the flow in blown-up phase space

- Variational study of geodesics
Blown-up ODE in McGehee coordinates

r’ = vrcosb

1
v = W () — =v?cos + 2r hcos

2
=
1
w' = W' (0)cosd — W (0)sinb — 50w cosf — (2rh — v?) sinf cos §

and the energy equation is

1
5( % cos® 0 + w?) — W(0) cos§ = rhcos* 0.

mw T

r € [0,00) = Size of the Triangle 6 [—5, 5] — Shape of triangle
v = Radial Velocity w = Angular Velocity
1 2ms3 cos 6

W(0) =V (0)cosh =

i .
7, 20 in2 6
\/7 \/COS2 _|_ S 7

: ] 3 .
New timescale: " = r2 cosf

1 1 1 1 1 1
-1.0

1 1 1 1 1
-0.5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 4.5



Zero Energy Isosceles 3BP

Focus on the easiest case — Energy h =0

Blown-up ODE in McGehee coordinates

r" = vrcosf

1
' =W(0) — 51}2 cos 0 1l

1 Do not depend on r

w' = W'(0)cosd — W(0)sinh — 5 VW cos 0 + v* sin 6 cos 0

and the energy equation is

1
5( % cos® 0+ w?) — W(6)cosf = 0.

_2 0 ﬁv

:[ “Collision Manifold”

Flow is a skew-product over the flow on
the collision manifold in (8, w, v) space
r variable found from linear ODE

r' (1) = v(7) cos O(7) r(7)

v >0, size rincreasing

v <0, size r decreasing

Flow on collision manifold is gradient-like
with respect to v

Six equilibrium points

[ —
__/
/
—
-
4
7 [T
| ﬁ




Equilibrium Points, Homothetic Orbits

Three Central Configurations (CCs)

0 = —0x 0 =0 0 = O, = arctan i

+ ms

Each CC determines two equilibrium points

v > 0 : size increases from 0 to % with constant shape

v < 0 : size decreases from o to 0 with constant shape




4§ -10 05 . 05 1.0
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More about the Collision Manifold Flow

Front Vieww >0

Lagrange equilbria are saddles

Euler equilibrium with v > 0 is a source
Euler equilibrium with v > 0 is a sink
Euler spiralling for mz < 55/4




Minimal Geodesics when h = o

Think of the Jacobi Maupertuis metric as a singular Riemannian metric on the closed Hill’s region H(h)
There is no Hill boundary but there are collision singularities where the metric blows up. But the
singularities are integrable and one can still define arclength for curves, Riemannian distance,
geodesics, etc.

We are going to look for minimal geodesics, that is, curves which are the shortest curves connecting
any two points on them. We will plot these in the blown-up Hill’s region H(h)

double collision x=0

double collision i
B=-2 , 2 ,
o H(h) = half-plane ol |
| -~ H(h)
/ AN IR e hR G N 1
triple collision| .
x=y=0 7

triple collision r=0



Existence of Minimal Geodesics

Arclength; v(t),t € J C R piecewise smooth curve and |a,b] C J:

b
1y, [asB]) = / VEG 7 dt € 0,00

Riemannian Distance: d(p,q) = inf (v, [a,b])
y

where ~ is a piecewise smooth curve with v(a) = p,v(b) = q.

Length of C° curves: I(v, [a,b]) = supp > d(v(t;),¥(ti+1)), P a partition of [a, ]

Theorem: The zero energy Hill's region is a complete metric space with respect to
the Jacobi-Maupertuis distance function.

« dum(p.q) is finite and nonzero if p £ q

- Topology of (H,dum) agrees with the subspace topology from R2
H(h) - A subset is dym bounded iff it’s bounded in R2

- (H,dum) is boundedly compact (bounded closed sets are compact)

- (H,dum) is a complete metric space

Corollary: For any p, q in H there exists a minimal

geodesic from p to q, i.e., a continuous curve with
length d(p,q)

A version of the Hopf - Rinow theorem



Minimal Geodesics Avoid Collision

Marchal’s lemma does not work for one-dimensional shape spaces.

3.0

25

20+

1.5

N\

1.0+

;

0.5+

Curve segment approaching double collision and
returning cannot be a minimizer. Modified curve
with red segment is shorter.

J LS / b \/ %V(e)(dr2 2462

Triple Collision involves a more complicated
argument to show that the path through collision is
not the shortest one.

28
triple
collision SR IR I IR e AT A S AT T 1%
x=y=0

2B




Lagrange Homothetic Orbit as a Minimal Geodesic

Lagrange homothetic orbits. Lagrange shape
gives the minimum of the shape potential V(0)

S SO A= /ab \/%V(Q)(dfr? + 12d62)

This geodesic is globally minimal, that is, it’s the shortest curve between any two of its points.

This generalizes to the NBP for minimal CCs, i.e., CCs which are minima of the shape
potential.



Minimal geodesics starting at a point

Starting at a given point p in ‘H, there must exist lots of minimal geodesics. We can reach any other
point g in H with a minimal geodesic.

Initial 6 Final ©

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Geodesics in H Orbit in collision manifold

Geodesics from p correspond to orbits on the collision manifold starting at a given initial 8 slice.
By choosing the right orbit, we can hit any given final r and 6.



(Geodesics and stable manifolds

Starting at a given point p in ‘H, there are geodesics for which the corresponding orbits on the

collision manifold converge to a restpoint. These geodesics are asymptotic to homothetic orbits or
to triple collision.

Initial 6

10 -

\.\
\
W
\
\
N

NN N

210 -05 0.0 0_5. 1.0 15 -1.5 .‘ o ‘—(;.5‘ o ‘0.0‘ o ‘0.‘5‘ o ‘1.‘0‘ o ‘1‘.5
Orbit in collision manifold

@ Triple collision A- @ Asymptotic to Lagrange homothetic A+

@ Asymptotic to Lagrange homothetic A- ®  Asymptotic to Euler homothetic



Minimality of the Euler homothetic orbit ?

-1.5

-1.0 -0.5 0.0 0.5 1.0 1.5

Barutello - Secchi
RM, Montgomery, Sanchez-Morgado

For ms < 55/4, Euler’s geodesic is not globally
minimizing, that is, long segments are not
minimal. Nearby geodesics oscillate around it
producing cut points (recall the spiralling near the
Euler restpoint on the collision manifold).




Minimality of the Euler homothetic orbit ?

For ms > 55/4, there is no spiralling near the Euler restpoint on the collision manifold. We can
use the flow on the collision manifold to prove:

Theorem: For ms > 55/4 Euler’s geodesic is globally minimizing in the h = 0 isosceles
problem (even though it is a local maximum for the shape potential).

Proof: Given two points p, q on Euler’s geodesic, we know there exists a minimal geodesics between
them. In the collision manifold, the corresponding orbit must connect the slice 6 = 0 to itself. One way
to do this is to choose the Euler restpoint. This gives Euler’s geodesic.

3.0

25

20

1.5

1.0

0.5 a3




Proof of Minimality of the Euler homothetic orbit (continued)

We know that any minimal geodesic avoids collisions, so the corresponding orbit in the collision
manifold would have to return to 6 = 0 without hitting 6 = /2, -r/2. With no spiralling near the
equilibrium point, such orbits just do not exist. So Euler's geodesic must be the minimal one.

Initial 6 = Final 8 =0

.
d
-
|
4
]
-

qv Solutions crossing 8 = 0 never return,
’ although they do approach asymptotically.

1.0 -

0.5+

0.0

=05

-1.0+

Front View

' Top View



The End

Thanks
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