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From Celestial Mechanics to Fluid Dynamics: Contact

structures with singularities

Hamiltonian systems, from topology to applications
through analysis Il

Eva Miranda (UPC & Observatoire de Paris & ICMAT)

MSRI

Eva Miranda (UPC) Contact structures with singularities November 28, 2018

1/

47



@ Motivating examples from Celestial Mechanics

© Motivating examples from Fluid Dynamics

9 Zooming in and out on Symplectic/Contact Geometry
@ Desingularizing b™-forms

© Existence of (singular) contact structures

@ Periodic orbits
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joint work with

Figure: Cédric Oms, Robert Cardona and ...
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joint work with

Figure: Cédric Oms, Robert Cardona and Daniel Peralta Salas
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The restricted 3-body problem

@ Simplified version of the general 3-body problem. One of the bodies has
negligible mass.

@ The other two bodies move independently of it following Kepler's laws for
the 2-body problem.

Spacecratt

Prumary

Figure: Circular 3-body problem
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An example from Celestial Mechanics: Planar restricted

3-body problem

@ The time- dependent self potential of the small body is
U(g,t) = ‘( q.\ + 12 qQ , with ¢1 = ¢1(t) the position of the planet with
mass 1 — p at time ¢ and go = g2(t) the position of the one with mass p.
@ The Hamiltonian of the system is
H(q,p.t) =p*/2=Ul(q,t), (q¢.p) € R* x R? where p = is the
momentum of the planet.
@ Consider the canonical change (XY, Px, Py) — (r,a, P =: y, P, =: G).
@ Introduce McGehee coordinates (x, a, y, @), where 1 = I% z€RT,
can be then extended to infinity (x = 0).

@ The symplectic structure becomes a singular object
4
——dx Ndy + da N dG.

which extends to a b3-symplectic structure on R x T x R2.
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Symplectic and contact geometry of these systems

(b"-symplectic)

1
w= @dxl Adyi + dei A dy;
i>2

or (m-folded)
w=x7"dx; Ady1 + Z dx; A dyj
i>2

Contact Geometry

The restriction to H = ct induces a contact structure whenever there
exists a Liouville vector field is transverse to it. This contact structure may
admit singularities.

How are these singularities?
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The Symplectic/Contact mirror

Symplectic Contact
dim M = 2n dimM =2n+1
2-form w, non-degenerate dw = 0 1-form o, a Ad(a)™ #0
Hamiltonian tx, w = —dH Reeb a(R) =1, tra =0

z'XHa =H
Ham. <
ix,da =—dH + R(H)a.
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Topology of the circular restricted 3-body problem

Figure: Lagrange points ( Source: NASA/WMAP Science Team)

@ For low energy levels ¢ € R, ¥. = H~!(c) has 3 connected components: %%
(the satellite stays close to the earth), ¥} (to the moon), or it is far away.

@ On the axis between earth and moon there is a critical point of the energy
(Ly, the first Lagrange point). If ¢ > H(Ly), (the satellite can cross from
the region around the earth to the region around the moon)~~ there are two
connected components, one bounded 22 and an unbounded one.
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Moser regularization of the restricted 3-body problem

@ To deal with the singularities of the Kepler problem, Moser (1970)
introduced a regularization procedure. This can be applied to the
planar circular restricted 3-body problem.

o Via Moser's regularization X% and ¥ can be compactified to if
and fiw diffeomorphic to RP?.

@ Moser's regularization ff’M is diffeomorphic to RP3#RP3.
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Contact Geometry of the restricted 3-body problem

Theorem (Albers-Frauenfelder-Van Koert—Paternain)

For ¢ < H(Ly) both connected components ¥, Z and Z admit a
compatible contact form \. Moreover, there exists € > 0 such that if

€ (H(L1),H(Ly) + €) the same assertion holds true for ff’M

A\

Corollary (Albers-Frauenfelder-Van Koert-Paternain)

For ¢ < H(Ly) the contact structures (ff, ker \) and (ii\/[, ker \)
coincide With the tight RP® and for c € (H(L1), H(L1) + €) the contact

structure ( ker \) coincides with the tight RP3#RP3.

A\
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Contact geometry of the restricted 3-body problem

Theorem (Albers-Frauenfelder-Van Koert-Paternain)

For any value ¢ < H(Ly), the regularized planar circular restricted three
body problem has a closed orbit with energy c.

e What if we consider the b3-symplectic model?
@ Does this contact structure have singularities?
e Can we still prove the existence of periodic orbits?

e Can we localize these periodic orbits with respect to the line at
infinity?
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Other physical examples and (singular) symplectic

contact structures

Classical Hamiltonian

o e Symplectic structures

Elliptic restricted 3-

Lol AlgelelSlg e e b3-symplectic structure
Gehee coordinates

McGehee regularization .
SR G ¢ Folded-type symplectic structures

Kustaanheimo-Stiefel

(B e e Folded symplectic structure
body problem

(G oo b™M-symplectic structures
el S IIEEIE S o Folded-m symplectic structures

Contact structures show up by restriction to a good hypersurface.
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Motivating examples from Fluid Dynamics

Figure: Arnold, Khesin, Ghrist, Etnyre, Peralta, Enciso
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Euler equations for fluids in 3-manifolds

Euler equations model the dynamics of an inviscid and incompressible fluid flow
for a Riemannian 3-manifold (M, g)
Ju

o — _VP
5 + V,u AV

divu = 0.

(u the velocity, P the pressure) Using the Riemannian volume form i, the second

equation reads
Loyp=0.

The vorticity is the only vector field satisfying
Lwp = da,

where @ = 1,,9. Using the vorticity the equations are the same as in the Euclidean
case

divu =0,
with B = P + 3g(u,u) (Bernoulli function)
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Stationary solutions

(Velocity field does not depend on time) V,,u = —VP, divu = 0.
Using the Bernoulli function

uXw=VB, divu =0.

@ if B = ct the vorticity is proportional to u (curlu = fu) and w is a Beltrami
flow. Then « is contact.

@ If B not constant and analytic, its critical set
Cr(B) := {p € M| VB(p) =0} has codimension at least 1 and

Theorem (Arnold structure theorem)

If the flow is assumed tangent to the boundary, then M\C'r(B) consists of
finitely many domains M,

@ M, is trivially fibered by invariant tori of w and on each torus the flow is
conjugated to the linear flow.

© or M; is trivially fibered by invariant cylinders of u, and its flow is periodic.
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Singularities and Euler equations

@ (joint with R. Cardona and D. Peralta-Salas) Morse-Bott (singular)
symplectic description of the fibers B with the structure i* 1o where

Mmoo =1L _vB UV
|vB|2

@ Applications of Contact Topology tools to the study of periodic orbits
of the Beltrami Flows on manifolds with boundary (Etnyre-Ghrist).

o What happens when there is a singularity on the boundary?
("vortons”)
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Zooming in and out on Symplectic/Contact Geometry
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b-Symplectic/b-Poisson structures

Definition

Let (M?",11) be an (oriented) Poisson manifold such that the map
p € M w— (II(p))" € A*(TM)

is transverse to the zero section, then Z = {p € M|(II(p))™ =0} is a
hypersurface called the critical hypersurface and we say that II is a b-Poisson
structure on (M, 7).

| \,

b-symplectic, log-symplectic
Batakidis, Braddell, Cardona, Cavalcanti, Delshams, Frejlich, Gualtieri, Guillemin,
Kiesenhofer, Klaasse, Lanius, Songhao Li, Marcut, Martinez-Torres, Melrose
Miranda, Nest, Oms, Osorno, Pelayo, Pires, Planas, Radko, Ratiu, Scott, Tsygan,
Vera, Villatoro, Weitsman
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Darboux normal forms

For all p € Z, there exists a Darboux coordinate system x1,y1,...,%n,Yn
centered at p such that Z is defined by x1 = 0 and

0 0
M=z 0x1 dyl 12: ox; 87/1

Darboux for bm—symplectic structures

H m
& 511 ayl Z Ox; 3yz
or dually
dxy N\ dy; + Z dx; A dy;

1=2

w:—m
L1

v
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Radko's classification of b-Poisson surfaces

Radko classified these structures on compact oriented surfaces:

@ Geometrical invariants: The topology of S and the curves ~y; where II
vanishes.

@ Dynamical invariants: The periods of the “modular vector field” along ~;.

@ Measure: The regularized Liouville volume of S, VS(I) = [, __wr for h a

|h|>e
function vanishing linearly on the curves 71, ...,7, and wy the "dual "form

to the Poisson structure.

Other classification schemes: For b™-symplectic structures (not necessarily
oriented) ~» Scott, M.-Planas.
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Other compact examples.

@ The product of (R, 7r) a Radko compact surface with a compact
symplectic manifold (S,w) is a b-Poisson manifold.

@ corank 1 Poisson manifold (N, 7) and X Poisson vector field =
(St x N,f(@)% A X + ) is a b-Poisson manifold if,

© f vanishes linearly.
@ X is transverse to the symplectic leaves of V.

We then have as many copies of N as zeroes of f.

Eva Miranda (UPC) Contact structures with singularities November 28, 2018



The singular hypersurface

Theorem (Guillemin-M.-Pires)

If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism ¢ : L. — L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.

This description also works for b"-symplectic structures.
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@ b-Poisson structures can be seen as symplectic structures modeled
over a Lie algebroid (the b-cotangent bundle).

@ A vector field v is a b-vector field if v, € T,,Z for all p € Z. The
b-tangent bundle *T'M is defined by

b-vector fields }

L(U,"TM) _{ on (U,UNZ)
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o The b-cotangent bundle *T*M is (*TM)*. Sections of AP(*T* M)
are b-forms, ®QP(M).The standard differential extends to

d:"QP(M) — *QPTH(M)

@ A b-symplectic form is a closed, nondegenerate, b-form of degree 2.

@ This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.

@ We can introduce b-contact structures on a manifold V2" t1 as
b-forms of degree 1 for which o A (da)™ # 0.

@ The b-cotangent bundle can be replaced by other algebroids
(E-symplectic) known to Nest and Tsygan.
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(Singular) symplectic manifolds

b™ -Symplectic

Folded symplectic
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Symplectic
manifolds

¢ Darboux theorem

¢ Delzant and
convexity theorems

* Action-Angle
coordinates

* Darboux theorem

e Delzant and
convexity theorems

* Action-Angle
theorem

Contact structures with singularities

Folded symplectic
manifolds

¢ Darboux theorem
(Martinet)

* Delzant-type
theorems (Cannas da
Silva-Guillemin-Pires)

* Action-agle theorem
(M-Cardona)
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Orientable cp2 g4
Surface

¢ |s symplectic ¢ |s symplectic e |s not

e Is folded * Is folded symplectic
symplectic symplectic * |s not b-

* (orientable e Is not b- symplectic
or not) is b- symplectic ¢ |s folded-
symplectic symplectic
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Desingularizing b™-symplectic structures

Theorem (Guillemin-M.-Weitsman)
Given a b™-symplectic structure w on a compact manifold (M?", Z):

e Ifm = 2k, there exists a family of symplectic forms w. which coincide
with the b™-symplectic form w outside an e-neighbourhood of Z and
for which the family of bivector fields (w.)~' converges in the

C?+=1_topology to the Poisson structure w™" ase — 0 .

e Ifm = 2k + 1, there exists a family of folded symplectic forms w,
which coincide with the b™-symplectic form w outside an
e-neighbourhood of Z.
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Consequences

A manifold admitting a b**-symplectic structure also admits a symplectic
structure.

A manifold admitting a b***1-symplectic structure also admits a folded
symplectic structure.

Theorem (Cannas da Silva)

Any orientable compact 4-manifold admits a folded structure.

The converse is not true.

S4 admits a folded structure but no b-symplectic structure.
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Deblogging b**-symplectic structures

de 2=l
w:ﬁ/\(Zaix"’)—l—ﬁ (1)
i=0

@ Let f € C*°(R) be an odd smooth function satisfying f/(z) > 0 for all
x € [-1,1],

and such that outside [—1, 1],

f(@—{m-ﬁi%—l—? for x< -1

W—FZ for z>1
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Deblogging b?*-symplectic structures (Proof)

@ Scaling:

o) = 7 (). @

€
Outside the interval [—e¢, €] ,

—1 2
f (x) _ ) Brk—DazFT T @I for =< —e
€ - —1 2
(2k—1)z2F 1 + 2h—1 for x>e€

@ Replace %’; by df. to obtain

2k—1

wF:dfF/\(Z a;r’) + B

=0

which is symplectic.
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Symplectic character

@ da; =0 ~ we =dfe A (Z%Ol a;z') + 3 closed.
@ Outside U, w, coincides with w.
@ In U but away from Z,

n dfﬁ 2k n

w

« = dz-
which is nowhere vanishing.
@ To check that w, is symplectic at Z, observe that
2k—1 2k—

wE:dfe/\(in’ai)+ ,_Qkf< >dx/\ ZlOéL
i=0

which on the interval |z| < € is equal to
e 2F(f/(2) dx A ag + O(e)) + B and hence

W = e_Zk(f’C:) dz N ag A B"L + O(e))

which is non-vanishing for € sufficiently small dz A ag A B7~1 £ 0.
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Convergence

@ To check

(3)

— ¢ TN A — A ——
. ¢ ox 8y+0m2 0ya * +0:1:n OYn

-1 o2k E 8 a 3 3 8 3
: ( € )
where g(z) = f,%z), converges to

w*173-2]f£/\2+ 9 Ai+~"+iA 9
ST 0z Oy Oxs Oy 0x,  Oyn

as ¢ tends to zero.
Consider h(z) = (%)21@719(%)_

@ Then w_ ! converges to w™" in the C**~! topology if eh (%) converges in
the uniform norm to 2kr. But 22F = ¢2Fg(Z) for |z| > €, so for € < |z],
eh(%) is equal to 2kx, and for € > |z| both functions are bounded by a
constant multiple of e.

@ Hence eh(%) converges in the uniform norm to 2kx when € — 0. and this
gives the C%*~!_convergence of (3) to (4).
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Another general picture...

; of i £ Fi T\ X EY
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Poisson

b-Poisson

Symplectic Contact
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Jacobi

Poisson

b-Poisson

Symplectic

£ 9HaAe
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Jacobi manifolds

Theorem (Lichnerowicz, Kirillov)
A Jacobi bracket is of the form

{f.9} = A(df,dg) + f(Rg) — g(RY),
where A € X2(M) and R € X(M) satisfy
o [A,A] =2R AA,
e [A,R|=LrA=0.
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@ Poisson manifolds: R = 0.

e Contact manifolds (M, ker av): R Reeb vector field,
A(df,dg) = da(X¢, Xg).

@ Locally conformally symplectic (l.c.s.) manifolds (M,w, «):
A(df,dg) := dg(wtdf) and R := wia.

If (M, A, R) Jacobi then (M x R,e~(A+ £ A R)) is Poisson.
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Characteristic leaves

Definition

The Hamiltonian vector fields are defined by X; := A*(df) + fR.

F(M) = {X;|f € C®(M)} = ImA* + (R) is integrable.

@ R € ImA!: even-dimensional leaves: |.c.s.

o R ¢ ImA*: odd-dimensional leaves: contact.
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Jacobi

Poisson

b-Poisson b-Contact

Symplectic Contact

Definition
A Jacobi manifold (M?"*+1 A, R) is b-Jacobi if A" A R 0.

There is a one to one correspondence between b-Jacobi structures on an

odd dimensional manifold and b-contact forms. = = - =
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Local normal forms and geometry of the critical set

Darboux theorem

There are 3 local models depending on the singularities of the Reeb vector
field and the contact structure.

v

Theorem

Let (M?"*1 ¢ = ker a) be a b-contact manifold and p € Z. We denote
Fp the leaf of the singular foliation F going through p. Then

Q if&, is regular, that is F,, of dimension 2n, then the induced structure
on F, is locally conformally symplectic;

@ if &, is singular, that is F, of dimension 2n — 1, then the induced
structure on J, is contact.
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Existence of contact structures

All 3-dimensional manifolds are contact (Martinet-Lutz) in higher
dimensions.

Theorem (Borman-Eliashberg-Murphy)

Any almost contact closed manifold is contact.
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contact structures

Theorem (Even singularization, M-Oms)

For any pair (M, Z) of contact manifold and convex hypersurface there
exists a b%*-contact structure for all k having Z as critical set.

Corollary (of Giroux theorem)

For any 3-dimensional manifold and any generic surface Z, there exists a
b _contact structure on M realizing Z as the critical set.

4
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® Singularization (even case)

e Using the transverse contact vector field, & = udt + (3, where t is the
coordinate on R, u € C*(Z) and 3 € Q}(Z2).
o Let us take a smooth function f. such that
Q f(z)==xforx € R\ [—2¢,2¢]
Q f(z)= 73:%%1 for x € [—¢,0[U]0, €]
@ fl(xr)>0forall zeR.
Consider o, = udf. + f3. It is a b**-form that coincides with a outside
Z x (R\ [—2¢, 2¢)).

@ Realization problem for odd m.

Theorem (Odd singularization, M-Oms)

Let (M, «) be a contact manifold and let Z be a convex hypersurface, then M
admits a b**+1-contact structure for all k that has two diffeomorphic connected

components Z1 and Zs as critical set. One of the hypersurfaces can be chosen to
be Z.
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What about periodic orbits?
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What about periodic orbits?

?

Weinstein's conjecture

The Reeb vector field of a contact compact manifold admits at least one
periodic orbit.

@ Taubes proved it in dimension 3 for regular contact structures.

@ What about singular contact structures?
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Key point: Desingularization

Theorem (M-Oms)

Given a b**-contact manifold with convex critical set 7, there exists a

family of contact forms agreeing with a b**-contact form o outside of an
e-neighbourhood of Z. The family of bi-vector fields A. and the family of
vector fields R associated to the Jacobi structure of the contact form
converges to the bivector field A and to the vector field R in the
C?+=1_topology as ¢ — 0.

Theorem (M-Oms)

Let (M, ) be a closed b**-contact manifold of dimension 3, then there
exists a family of periodic orbits O, associated to the Reeb vector fields R..
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A variational principle to detect periodic orbits.

Periodic orbits on M «~ smooth maps x : R/Z — M This set is called the loop
space, LM.
If IIo (M) = e the action functional is well-defined:

Ay () = —/Du*w+/01 Hy(x(t)) dt,

(where u is an extension of x to the disk and we assume H; = Hy41)

A loop x is a critical point of the action functional Ay (x) if and only if t — x(t)
is a periodic solution of the Hamiltonian system

& = Xy(2(t)).

Key point: )
dAg(2)(Y) = /0 w(z — X (x(t)),Y)dt.

VY and w is non-degenerate and this works in the b-symplectic case too.
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Periodic orbits via desingularization

What one would like to do: Take the limit € — 0.
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Periodic orbits via desingularization

What one would like to do: Take the limit ¢ — 0.

Problem: ~. need not be continuous.

The periodic orbit of 7. can be outside the critical set (type (1)), or be
contained in it (type (2)) or cut it (type (3)).
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Periodic orbits via desingularization

What one would like to do: Take the limit ¢ — 0.

Problem: ~. need not be continuous.

The periodic orbit of 7. can be outside the critical set (type (1)), or be
contained in it (type (2)) or cut it (type (3)).

If there exist € > 0, such that there exists a periodic orbit of R, of type
(1), then this is a periodic Reeb orbit of (M, «).
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A counterexample to the singular Weinstein conjecture

Inspirational: Find periodic "solutions” that go to infinity in the restricted
three body problem.

Theorem (M.-Om:s)

There are compact b -contact manifolds in any dimension for all m € N
without periodic Reeb orbits.

Corollary (Counterexample to the Hamiltonian Seifert conjecture,

M.-Oms)

There are b™-symplectic manifolds with proper smooth Hamiltonian whose
level-set does not contain periodic orbits of the Hamiltonian flow.
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A counterexample to Weinstein's conjecture for singular

contact structures

@ Take a compact contact manifold with a finite number of isolated
periodic Reeb orbits (for instance an ellipsoid) and change the contact
form to a b™-contact form by inserting a copy of Oms’ plug for every
periodic Reeb orbit.

@ How to construct Oms’ plug: Consider the standard contact structure
ase on the cylinder D(2) x [—2,2] given by as = dz + zdy, where
D(2) is the disk of radius 2 and z is the coordinate on the interval.
The Reeb vector field is given by %.

e Take S? C D(2) x [—2,2].We identify the unit sphere as the critical
set of a b"-contact form that agrees with the standard one on the
boundary of the cylinder. ( The unit sphere is a convex surface (the
vector field X = z% + ya% + Qz% is a contact vector field), ~~

semilocally gy = udt 4 3, where X = %, u € C*(S5?) and
B e QY(S?))
@ Check that it works!
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A picture is worth a thousand words!

—
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‘v
"v. -
p p

Figure: Oms’ plug for even and odd m
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