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Can lighter fluid sustain heavier one on it?

Blue : water

Density :\water > oil
' Exerted by gravity

(Dintermediate surface : unstable
(2)change position by disturbance

= Rayleigh-Taylor instability

Rotation?

> g1 -} .::3 L ] ':"1 . 3
Li Shengtai, Hui Li, Parallel AMR code for compressible MHD or HD
equations. LosA. Nati. Lab.



Rayleigh-Taylor Instability (RTI)

Club Nebula=>

(Hubble Space Telescope , In October 1999, January
2000 and December 2000) (supernova explosions in
which expanding core gas is accelerated into denser
shell gas)

&RT-cirrus clouds

(By D. Jewitt, University of California at
Los Angeles?)

[1] M. J. Andrews & S. B. Dalziel, Small Atwood
number Rayleigh-Taylor experiments. Phil. Trans. R.
Soc. A (2010) 368, 1663-1679




& slow rotation Rapid rotation =

Experiment : Suppression of RTI by rotatron

Orad/s . Srad/s 3d/S ‘-'j-

* Purple:MnCl,(aq), Transparent: NaCl (aq)
» Effective density is controlled oppositely by magnetic field.
K. A.Baldwin, M. M. Scase and R. J. A. Hill, The inhabitation of the

Rayleigh-Taylor instability by rotating. NATURE SCIENTIFIC REPORTS,
5:11706, DOI:10.1038/srep11706 (2015).



Chandrasekhar(1961) :

“... Rotation does not affect the
instability or stability,

as such as a two layer stratification”




Inertia internal-gravity waves

* Continuously stratified rotating fluid
* The dispersion relation

w « exp [i(kx + ly + mz — wt)]

2 2 4 J2 f =20
w2 = m f2 + k” 41 2 NZ2:Brunt Vaisala frequency
k2 + 12 + m? k2 + 12 + m? k,l, m: wave number
q N .
9 g ap a = ——: Rossby radius
NZ=_Z°F 7]
po dz
. k2 + l2
o ==
m2

e Short wave (a > 1) : w = aN &(unstable) internal gravity wave
* longwave (a K 1):w = f <(stable) inertial wave

* Long waves : stable by rotation

For an unstable stratified fluid
* Short waves : unstable by gravity




Encyclopaedia of Mathematical Sciences 103

Gyroscopic Analogy of
Coriolis Effect on Rotating

Flows Confined in a Spheroid J L vPolzhansky

Fundamentals
Why and how can an unstably of GeophySiCal
stratified fluid be Hyd rodyn amiCS

stabilized by rotation?

What is the baroclinic effect?

Felix V. Dolzhansky

- : &) Springer
translated by Boris A. Khesin = °Prig
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Part 1

Motion of a rotating stratified flow confined
in a tilted spheroid




Density stratification and hydrostatic balance
Spheroid:

2 2 2

X1 X2 X3
S=—=+—o+—5-1=0

a; dz; 4

For Boussinesq approximation [Poincaré(1910), Dolzhansky(1977)],
to set density p:

P = Po + p,(x'inJ t):
where p, is constant and assume |p’| < pg.

A reference pressure:

p=pe(z) +p'(x,y,21t),

Where |p’| < p, and

9o _ _
aZ ’ ng




Boussinesq approximation for equations of stratified fluid
Equation for buoyancy:

9p : —
at+(‘v V)p =0

where the Brunt-Vaisala frequency: p = po T p(z,y, z,t)
20 e 9.9
N<(z) = Py
Interms of g = Vp'/py:
dq
5 T(@-V)g=-(¢-V)v

The Momentum equation:
ov 1 p’
—+@w-Vv=——Vp ' —=gk, V-v=0.
ot ( ) PR )

In terms of vorticity 22 =curlv : / Baroclinic

00 torque
E—(Q-V)v+(v-\7)!2 =—g X q.




Exact solutlons of Nawer-Stokes eguation

Navier-Stokes equation: — + (v-V)v = —p— Vp' — —ge + vl?%v.

The exact steady solutlons [Dolzhansky 77]

wW,=—-—— +— k,
1 a3x3] azxz
W, =—2xk+= / /
2 a3x1 + 3x31 7

W3 :—a—le‘l‘_xl] Q
Look for a general non-stationary solution:

§&"9 )

3
aa-a
v(x, ) =Zwk(t)Wk(x), wp = 22830 e =1,2,3),
Al
k=1
I, 0 0 as +a3 0 0
I=[{0 I, 0]= 0 as + a? 0

0 0 I 0 0 a? + a3




Euler-Poisson equation for extended heavy top:
m=wxXm-++ go Xl
c=wXo, m=]|w,

Equations of motion for a general heavy top

The vector o are density differences

relative to the major semi-axes of ellipsoid:

0O =

1 ap!
R a P—
Po ( ! dx1

apr
6.7(,'3

opr
axZ

J + as
0

i‘l‘az
0

k). constant in space
0

Gravity torque

l():

a, cos a1l + a, cos a,j + as cos azk.

'he vector [, defined by ellipsoid’s orientation in space:

a; (i = 1,2,3) : angle of gravity vector with principal ellipsoid axis

dt

R-Vv+@-V)R=—-gxq—___

Baroclinic
torque

~
N




Motion of a heavy rigid body

m=owxm+goxly, m=I7/
OC=WXO

Change of sign

®——0, Mm——-m, O0— —0

m=mxw+Mglyxlg, m=I1w
y=vxw, y:=0/[o|




First Integrals

ov 1 ,p'
—+@-VNv=—="rp —Fgk
o T W Vv =——-Vp' =gk,

Ob!

E‘F(U'V)b = 0.

Full energy and potential vorticity of the fluid:

1
E==p, f u?dxdydz — j p'g - xdxdydz,
2" Jp D

M=02-Vp'
m=wXxXm-+ go X l,, 0=wXao, m-=I|w
have three first integrals of motion
1
B =om-®—=gly-o, o,
II,=m-0o

Angular momentum about the z-axis

N~

RN




Application: Toy circulation of Hadley and Rossby

Dolzhansky Fundamentals of Geophysical Hydrodynamics (2006)

s+ i
i g & mooad KR
o f"ﬂ.“....f'ﬁ‘“‘.:l' ¥ £oF R A

General atomospheric circulation
according to Ferrel (1859)

system rotation, friction (viscosity)

m=w x (m+ 2mg) + glp x ¢ — Am

O=wxog+ulop—o)
thermal conductivity

Heating

Cooling

Hadley cell

Cooling

Ferre!l cell

Heating



Flow field corresponding to stationary top: upright spheroid

1 ap’ ap’
O = _<a1_p £ k), lO — (0,0, _ag)
y 0,

0> = —C0S 0

o |l ly|&sleeping top or hanging down top

OsSleeping top:

o; =+1(0 =n) & aa% > (0 ©lunstable stratification (N?(z) = —pi% < 0)

OHanging down top:

o3 =—-1(0=0) & 9" - () ostable stratification (N?(2) = _ 99 0)
0z Po 0z



Linear stability of sleeping top

The steady state corresponding to the sleeping top (a; = a,):

W1 = Wy = O, 01 = 0y = O, w3 = W3, O3 = O3
__aiajzas
. . ~ o~ o~ o~ o~ o~ Dk T T, R
This steady state is perturbed by (@1, @,, @3, 61, 55, 63). dp’
0309 X 3,
The forth-order system admits solutions with (&, @,, @3, 61, 6y, 63) o e 1@t
For stability, we get: [k
40309031
2 30904314
(1)30 > 12
3
Thus, for o3¢ > 0, we see
lighter fluid can keep lifting up heavier one on it lo
when w5 is large enough to satisfy the above inequality. z




Part 2
Stability of motion of a heavy symmetric rigid body
with the top axis misaligned from the symmetftric axis

Tilted spheroid Misaligned heavy top




Tilted spheroid & Misaligned symmetrical top

Tilted spheroid

ez‘

Misaligned heavy top

with

Cp = Op X Wy

Euler-Poisson equation

m; =my X @+ Mglo, X1

1o = (0, sinle| cos€)

S~

Heavy symmetrical top with rotating
axis tilted from symmetric axis

 Bysolvingm, = 0 & 6, = 0, steady solutions are derived

0.)120, D =

01=0, op=

o30Mglwspsin€

(I — B) w3, + Mglozycos €’

6320M glsing

(I — 13)0)3?0 + Mglozgcose’

03 = W30,

03 = 030,

* 039 > 0= uprighttop; o037 < 0 = hanging down top



Reconstruction problem in terms of Euler angles

Reconstruction problem: (@1,00,03,01,02,03) = (6,0,V¥)

For small € < 1 C, — Mglozo
W) = ¢sinBsiny + Ocosy =0, @ 60=0 (I — I3) w3, + Mgloso
Wy = @sinBcosy — Osiny = 030C2€, B+ P = way
w3 = ¢ cos B + Y = w3, @ ¢ = w3
o1 =sinfsiny =0, D> Y=0
0, = sinOcos ¥ = (L€, @ 0 = C,e¢
03 = cos 8 = 03, > 0 = 0(¢)
In summary,

_ Mgl B B
0= (11_13)w320+Mg18’ (p = 307 + (pO) Y = 0

— The misaligned top behaves as precession
with velocity ¢, though it has not ¥




Linear stability analysis & characteristic equation

B Linear stability analysis

m;, = [wy

(@p,0p) =|(0g,00) |+ (0, 5p)

o< exp(i@t)

m; =my X W +Mgloy, X 1
Op = Op X Wy
with 1o = (0,sin€,cos €)

Characteristic equation:

B Non-dimensional form (quartic part)

)

D=a*+Pd*+Ph=0

P =—-a?+ (1+C)ozphga— (2 —2C+C* —203038C)

P, = —0308h(1-C)ar’

1 -C
0308C L 030138+ (1 = C LY a?
+0308 { 30058 + ( )[C0'30g"+ 3]}

+06308l { 030138C(1+C) —3(1-C)*} «
+(1 — C+ 03038C)?

D = w? x (quartic eq.in w)|=

o30Mglanpsin€
“2 = (I —13)0)3?0+Mglcr3ocos£‘
2 .
o5, Mglsing
Gy = 30

(I — 13)605?0 + Mglozpcose

(01:0, 03 = R, GIZO; 03 = O3,

— g=Md D
W30 I3 03, 74
O _ Mo _ _ 8Coxh




Eigenvalues=Spectra: prolate 'sleeping’ top

B Prolate sleeping misaligned top (a; = 1,a; = 1.1) a3 >0
I
c=-2<1 10f " i
Il i Fx;;'*"" +
0.5 ] +: PEM
(@, &) o< exp(ior)| 5 o0 i =: NEM
¢ W i
[ o -
-0.5 BT . ,{]
: \::‘:'-'- LI
B U I I T P v
0 1 2 3 4 | Black dashed line: € = 0
(g Red solid line: e = 0.5
e
0_5; Stable R
T
'E' D.U:
-0.5}
S I 2 3 4




Spectra: prolate hanging-down top

B Prolate hanging down misaligned top (a; = 1,a; = 1.1)

(@p, 6)) o< exp(imr)

3; 1\ ]
o 'K
1_ """'--ra-v—-+aj... +
5 o — sssescz]
0 1 2 3 4
{thn
o3
0.2;— Unstable
e A >
= 0.0} it
01}
-0.2}
-03¢
0 1 2 3 4

+: PEM
=:NEM

Black dashed line: € = 0
Red solid line: e =0.1




Spectra: prolate hanging-down top

B Prolate hanging down misaligned top (a; = 1,a; = 1.1)

(@p, 6)) o< exp(imr)

O\ |
2} | '
| — /! +
- 1 y :
5 o e .
-1ty e -
<2t /;’ +\‘|( +
AN/ |
0 1 2 3 4
hn
o3
0.2 Unstable
- 01 >
'E' U.D; =
~0.1}
-0.2}
-03¢
0 1 2 3 4

0'30<0

+: PEM
=:NEM

Black dashed line: € = 0
Red solid line: e =0.1

o30Mglmzpsin €
@ = (I — B) w3, + Mglozcose
2 .
ciMglsin€
&, 30

(I - B) W3, + Mgloycose

o =0, w3 = w3y, 61 =0, 03 = 03,



Spectra: oblate 'sleeping’ top

B Oblate sleeping misaligned top (a; = 1.1,a; = 1)

(@, &) o< exp(iot)

+: PEM
=:NEM

. ,Ir.\
+/ \ .
-y
\‘“":-—' e
-
1"&..____ ____________
g
[
1 2 3
ek

Black dashed line: e = 0
Red solid line: e =0.1

0'30>0




Spectra: oblate 'sleeping’ top

B Oblate sleeping misaligned top (a; = 1.1,a; = 1)

0'30>0

(@, &) o< exp(iot)

+: PEM
=:NEM

Black dashed line: e = 0

Red solid line:

e =0.1

'If"u'
+/ \ +
-
\“'__:'--—- —ppmsss—=-=—=2
F - -
R“'"'-E-. .........
+ “‘-,II / +
. .l. II. el
1 2 3 4
lhn
Unstable
<>
T 2 3 a4

(02:

)

w =0, w3 = w3, 67 =0, 03 = 03,

o3oMglmspsin €

(I — Ig)a)s.zo + Mglosgcos €

0'320M glsing

(IT — B) W3, + Mglozgcos €




Instability of sleeping top due to misalignment

B Oblate misaligned top (a; = 1.1,a; =1,C =13/, > 1)

B [nstability arise at collision point (g = g.)

D= (f)4—|—}31(f)2+PA2:O

P == +={=+Eyosgiate]— (2 — 2C+ C? — 203013 4C)

P = —o308l(1 —C)or’
S _
. 2 4 = : o2
g
| Co308 |

+0308l { 030538C(1+C) —3(1-C)*} o
+(1 — C+ 63038C)*

In summary, @2 « 0(€?),P; « 0(1), P, x 0(e?),

- PA16)2+p2:0

Re[w]

= i
'E' 0.0:

~0.5]

o (1=C+03081C)" + 03081 F (§)
B 2(1-C+ 630l3§C)+C2

with  F(8) := {o30C(1 +C)g—3(1-C)*} &

loblate top) (i)

o = gCGg(}lg

" 1-C+3Coyl3

Black dashed line: e = 0

Red solid line: e =0.1
-""""'"|'""""'.
E / \

L .ri"ﬁ/:- S S
]
' e i
e 1]
Al
1 2 3

-1.00—




Eigenvalues at divergence point (oblate top)

B Oblate misaligned top (a; = 1.1,a3 =1,C = I3/I; > 1) o = 1—(%:3-0"32? I
B a — oo at divergence point( g = G4) £+ 9303

- a4 A A Black dashed line: e = 0
D=o"+P0"+P=0 Red solid line: € = 0.1
P =0+ (14+C)ozghgo % 1t

P, =|-0308b(1 - C)a’

In summary, &% « 0(a), P; x 0(a?),P, x 0(a?), % 0-02
‘ PAld)2+ﬁ2:O '0-5;'

st s Feo o wec b oc oy oo s

1 C—1 0 1 2 3 4
W = |03y 2Csiney | —-
|030/8Csin C gCozpcose—(C—1) N
> @ e R (stable) if § > §4; @ € C (unstable)if § < 1




Spectra: oblate hanging-down top

B Oblate hanging down misaligned top (a; = 1.1,a5 = 1)

(@p,6p) o< exp(ier)

+: PEM
=:NEM

Black dashed line: e = 0

Red solid line: e =0.5

ity
\l ¥ ‘:H::T?'_-_l‘ﬁ-rr.-.-.._“.______.________i_
DN +
SRS +
/x’”’w +
0 1 2 3 4
ek

Absolutely Stable

o 1 2 3 4

0'30<0



Sufficient conditions for (nonlinear) stability
Linear stability analysis

Nonlinearity § (1992) 1-48. Printed in the UK

They did not consider
misalignment when i =15

The heavy top: a geometric treatment

D Lewist|, T Ratiutq, J C Simo}* and J E Marsden§**

T Department of Mathematics, University of California, Santa Cruz, CA 95064, USA
¥ Division of Applied Mechanics, Stanford University, Stanford, CA 94305, USA
§ Department of Mathematics, University of California, Berkeley, CA 94720, USA

Received 6 June 1991

A mmoanba A lea. T TN FALL
ALLCDICA DY J L UlDoun



Part 3

Spatial description and energetics of motion of a
heavy rigid body

Misaligned heavy top
eZ“




Spatial description of a heavy symmetrical top

t(t) unit vector along axis of the symmetry
Basis of the body coordinates {e;(¢),e(¢),t(¢)}
t—=m %t @(t): angular velocity of the body

Taking tx
®=1txt+ ot

mg: angular momentum relative to the stationary point O,

viewed from the inertial frame

mg = At X t+ Cost

C, A: Moments of inertia about O w.r.t axial direction and perpendicular to it



Equation of motion of a heavy symmetric top

Lagrange’s top

mg = /t X (—Mgez) mg = At X E-I-C(Dgt

Taking tx

M : mass of the body,
[: length of line segment connecting O to the centre of mass.

—ge,: the gravity acceleration with e, unit vector in z-direction.

mg = Atxt+Cmst+ Caont

(@3 = 0 for Lagrange’s top)

mg = [t X (—Mge,z)




Motion of a charged spherical pendulum

At = —Mglle, — (t-e)t] —A(t-t)t — Cant x t

—~
—

Motion of a charged spherical pendulum with
gravity force in negative z-axis, in the field of
magnetic monopole located at O.

https://hepweb.ucsd.edu/ph110b/110b_notes/node36.html



Componentwise form of motion of Lagrange’s top

At = —Mglle, — (t-e)t] —A(t-t)t —Cant x t

) 5 . .
Position of a pendulum AX = MgIZX —AX°X —Cax(YZ-ZY),

(1) = (X(),Y(),2()) (€ 87) AV =Mglz¥ —AXCY = Can(2X —X2),
AZ = Mgl(Z* — 1) — AX*Z — Can(XY — YX)
Equilibria  (Xo,Y,Zp) = (0,0,—1) Hanging-down top
(Xo0,Y0,Zo) = (0,0,1) ‘Sleeping top’
Perturbation around equlibria
t(r) = (Xo,Y0,Zo) + (x(1),¥(2),2(2))
AX+CanZyy —MglZyx =0,
AV —CanZpx —MglZyy =0
[AZ —2MglZ = —AX*Zy — Ca(sy — yx) ~ 0]




Perturbation about equilibria of Lagrange’s top
Hanging-down top 7, = —1 ‘Sleeping top” Zy =1
AX—Cany+Mglx =0, AX+Cazy —Mglx =0,
Ay+Canx+Mgly =0 Ay —Canx—Mgly =0

Energy of disturbances | 1
9y | | E, = 5A (x2 -|—y2) — EMgl (x2 +y2)
2, w2 2, .2
E, = EA (x +y ) + EMgl (x +y ) (>0) 1. Gyroscopic systems

One might think that systems with NEMs are artifacts
or unphysical, purely mathematical, oddities; this, how-
ever, I'Q 1101 the case. They occur in fluid and plasma
awium for a reason that will become clear below.
Generally. they occur in mechanical systems with gyro-
scopic forces, like the Coriolis force, and they occur in
the dynamics of particles in magnetic fields. An example

Morrison: Rev. Mod. Phys. 70 (1 998) 467 that exhibits both of these is described by a Lagrangian
of the form

=2 5 (X “+1. H—CH'-.—HH— K(x 2+_f.;2}. (372)



Linear stability of sleeping Lagrange’s top

o o Ao> —Mgl  Cano 0
x(t) o< e™. y(t) e —Canoe  Ao®—Mgl |
_Caz , Mgl 2 _ .2 A2 2 a2 (— i

A sufficient condition ja” <0 <= @ — 0 > 0 & 205 — 0 > 200G \/ WE —

for (neutral) stabiliy

= C’wi > 4Mgl

Energy of

perturbations

— 1 Mgl
r_ 1 ) Mg 2 | 2\ 2 .2 2 2 2 | 2
Ly = 2A (O‘ A )(x Ty )_A\/(‘)G mK(\/wG wKin)(x +)7) Morrison (1998)

1
A (# +y%) - > Mg (x* +y°)

E, =

DD |

———
Ef >0, E; <0




Eigenvalues=Spectra: prolate sleeping top

B Prolate sleeping misaligned top (a; = 1,a; = 1.1) a3 >0
I
c=-2<1 10f " i
Il i Fx;;'*"" +
0.5 ] +: PEM
(@, &) o< exp(ior)| 5 o0 i =: NEM
¢ W i
[ o -
-0.5 BT . ,{]
: \::‘:'-'- LI
B U I I T P v
0 1 2 3 4 | Black dashed line: € = 0
(g Red solid line: e = 0.5
e
0_5; Stable R
T
'E' D.U:
-0.5}
S I 2 3 4




Spatial description of a heavy symmetrical top
with axis misalighed from symmetric axis

. _ Misaligned heavy to
mg = [yX (_Mgez) e “g v o
V4

Y = cosEt+singex(# t)

mg = Atxt+ Cawst+ Cost
(a3 # 0 for misaligned top)

t X

At = —Mglcosele, — (t-e)t] — A(t-t)t — Cast X t —sine(t-e;)es




Summary

W Obliquely tilted spheroid corresponds to the heavy symmetrical top
with the top axis tilted from the symmetric axis (misaligned heavy top)

M Steady solutions are understood via Euler angles
—> Only precession velocity ¢ survives with small angle 8 = 0(¢); (3 = 0)

B Spectrum for oblate uprizht misaligned top has singularity (divergence point)
(g = J4) and a new unstable region ( § = g.) due to the asymmetry, which does
not appear for the usual symmetrical top

B Although the ususal hanging down top is always absolutely stable, spectrum for
prolate hanging down misaligned top has singularity (divergence point)
(g = g,) and unstable region ( § = §.) due to the asymmetry

B For large w3, Instability occurs for oblate sleeping top whereas two NEMs collide at
zero growth rate and the energy become zero

B The asymptotic eigenvalues are derived and represent these curious spectrum well
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