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Head and Tail speeds of Mean curvature flow with
forcing

Inwon Kim (joint with Hongwei Gao)

Dept. of Mathematics, UCLA
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Let g : Rd → R be a Lipschitz function which is periodic with respect to
translations by Z

d . We consider the evolution of sets (Ωt)t>0 in R
d by the

flow
V = −εκ+ g(

x

ε
) on ∂Ωt .

Here κ = κx ,t denotes the mean curvature of ∂Ωt at given boundary
point, positive if convex with respect to Ωt .

Note that zooming in by the coordinate change (x , t) → (x/ε, t/ε) we
have

V = −κ+ g(x) on ∂Ω̃t .

We are interested in the behavior of Ωt or Ω̃t as ε → 0.
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Literature in periodic media

◦ Lions-Souganidis (2005): Homogenization result for positive g , when
|Dg |/g2 is sufficiently small.

◦ Cesaroni-Novaga (2013): In laminar setting g(x) = g(x ′, xn) for periodic
graph solutions {xn = u(x ′, t)}, existence of generalized traveling wave
solution with the maximal speed.

◦ Caffarelli-Monneau (2014): Homogenization for positive and Lipschitz g

in two space dimensions. A counterexample in three dimensions, based on
the existence of an unbounded stationary solution.

◦ Cardaliaguet-Lions-Souganidis (2009): examples of pinning and failure of
homogenization with sign changing g .
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We employ the level set PDE

ut = F (D2u,Du, x) = |Du|[tr
{
D2uε

(
I − D̂uε ⊗ D̂uε

)}
+ g(x)], (1)

which is a singular and nonlinear parabolic equation.

Here the initial data is given as a uniformly continuous function u0(x), and
we will study the zero level set of u(x , t).
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We are interested in the description of maximal and minimal asymptotic
speed (“head” and “tail” speed) for uε in general setting, where we may
not have plane-like solutions and homogenization fails.
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Theorem

There exist two upper- and lower-semicontinuous functions s̄, s : Sd → R,

s ≤ s̄ with the following properties:

s̄ and s are continuous.

Let uε solve (1) with initial data u0(x) = (x − x0) · ν, then

lim sup
ε→0

uε(x , t) = s̄(ν)t − (x − x0) · ν

and

lim inf
ε→0

uε(x , t) = s(ν)t − (x − x0) · ν.
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In unit scale (ε = 1) this means

s(ν) = lim
t→∞

sup
{
x · ν : u1(x , t) = 0

}

t
,

s(ν) = lim
t→∞

inf
{
x · ν : u1(x , t) = 0

}

t
.

For any u1 with “flat” initial data.
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Theorem (General Initial data)

If uε solve (1) with uniformly continuous initial data u0, the following

holds in the viscosity sense:

∗
lim sup uε solves ut ≤ s̄(−D̂u)|Du|

and

lim inf
∗

uε solves ut ≥ s(−D̂u)|Du|.

In particular, if s̄ = s then uε uniformly converges to the unique viscosity

solution of ut = s̄(−D̂u)|Du| with initial data u0.
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Laminar case: travelling waves

Here we assume that g(x) = g(x ′, xn) and set ε = 1.

In this case, starting with initial set given as graph Γ0 = {xn = U0(x
′)},

one can show that the interface Γt stays as a graph {xn = U(x , t)} and U

solves the PDE

Ut√
(1 + |DU|2)

= ∇ · ( DU√
1 + |DU|2

) + g(x ′) in R
n−1 × (0,∞).

It follows that U is locally C 1,α in space, uniformly in time, if Γt moves
with finite speed, which is the case for us if U0 is linear.

Based on this regularity we obtain generalized traveling wave solutions.
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Traveling waves in Laminar media

Consider the direction ν ∈ Sd with ν · en 6= 0.

Theorem

Suppose s1 := s̄(ν) > s2 := s(ν). Then there are disjoint, open,

non-empty sets E1,E2 in R
n−1 and functions U1 : E1 → (−∞, 0],

U2 : E2 → [0,∞) such that the following is true:

(a) Ei and Ui (x
′) + x ′ · ν are Z

n−1-periodic.

(b) The sets ∂Ei × (−∞,∞), i = 1, 2, are stationary solutions.

(c) U1 → −∞ as x → ∂E1 and U2 → +∞ as x → ∂E2.

(d) The surfaces Γi := {xn = Ui (x
′) + si t}, i = 1, 2, moves with

V = −κ+ g away from the “obstacle” {xn = si t}.
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Traveling waves in Laminar media

While our approach allows to describe traveling waves both at maximal
and minimal speed, we only recover partial traveling waves away from their
highest and lowest positions, as described in (c). For instance in the
scenario where there exists multiple localized traveling waves at the same
asymptotic speed at s1, our method appears to capture the most external
profile of these waves.

When ν = en, the maximal traveling wave with maximal speed was
constructed by Cesaroni and Novaga using variational method.
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Homogenization in Laminar media

Corollary

If homogenization fails for graph solutions in laminar media, then there

exists a set E of prescribed mean curvature in T
n−1 with C 1,α boundary,

satisfying −κ = g on ∂E ∩ T
n−1.

Hence if we can guarantee that such E does not exist in T
n−1 for a given

function g , then we would have proven homogenization in n-dimensional
laminar setting.

It seems difficult however to understand properties of sets of prescribed
mean curvature in general, when they are not local minimizers of an
energy.
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Using the local traveling waves constructed above, one can conclude the
following:

Theorem

There exists C = C (n) such that If oscg < C then s̄(ν) = s̄(ν) for all
directions with ν · en > c0. C (3) =

√
2π.

Above result when ν = en was known by Cesaroni and Novaga.
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Homogenization in general media: criteria

When oscg is large, one can generate examples of fronts with different
head and tail speeds, adopting the arguments of Caffarelli and Monneau.
These examples are however restricted to laminar media.

In general media much less is known. Here the best known criteria for
homogenization is the smallness of |Dg |/g2, in which case one obtains a
global, Lipschitz continuous, traveling wave solution. It is not clear
whether one could improve this restriction.
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Cell problem approach

Typically to show that homogenization holds for (1), one starts with an
Ansatz

uε(x , t) = u0(x , t) + εv(
x

ε
) + o(ε),

where v solves a cell problem given by the limit profile u0, which in our
setting is a linear profile x · ν − st for a unit vector ν. The idea is then to
look for s = s(ν) for which there exists a Z

n-periodic solution v of the cell
problem

F (D2v , ν + Dv , y) = s in [0, 1]n.

The existence and bounds of solution v for the above problem (or an
approximate version of it) hence confirms the Ansatz as well as the
homogenizatio of uε.
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Furthermore the regularity of the cell solution v translates into the
corresponding regularity properties of the limit speed s.

• When |Dg |
g2 is small, v is Lipschitz continuous, and s(ν) is Lipschitz

continuous (Lions-Souganidis)

• In two dimensions, v and s(ν) are continuous (Caffarelli-Monneau)

• in two dimensional laminar case, v and s(ν) are Lipschitz continuous.
(Cesaroni-Novaga)
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Cell problem: difficulties

When homogenization is not expected, there may be no global limit profile
for uǫ, let alone an asymptotic planar profile. Instead we introduce
“obstacle cell problems”, which amounts to looking for the maximal
subsolution and minimal supersolution of a “cell problem”, yielding
descriptions for lim sup and lim inf of uε.

These solutions are not periodic and feature very low regularity in general...
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Obstacle approach and our contribution

The obstacle approach was first introduced by Caffarelli, Souganidis and
Wang for random homogenization of elliptic PDEs, and later adopted by
Kim and Požár for free boundary problems. They share the common
feature with our problem that there are no standard cell problems one can
expect to solve, either due to the non-periodic environment or
non-periodic evolution of the free boundaries.

On the other hand, in above results homogenization is expected to hold,
and the obstacle solutions are asymptotically regular in these settings.

Our contribution in this paper is thus introducing a “cell problem” type
approach for a problem where homogenization is not expected to occur in
general, or more precisely when large-scale regularity is missing.
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Head and Tail speed: Definition

Set ε = 1. For given s ∈ R and νSn, we define ūs,ν by the maximal
subsolution of (1) which lies below the obstacle Os,ν(x , t) := st − ν · x .
Then we define the head speed by

s̄(ν) := inf{s : ūs,ν < Os,ν after some time t > T}.
Similarly s(ν) can be defined using us,ν : the minimal supersolution which
lies above the obstacle Os,ν .

When defined in finite domain, we impose boundary conditions to coincide
with obstacle.
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Localization of obstacle solutions

To characterize the asymptotic normal velocity in terms of s̄ and s for
initial data that are not asymptotically affine, it is necessary to localize the
obstacle solutions to conclude that their head and tail speed is obtained
independent of its constraint on far-away lateral boundary.

In other words, we should show that the obstacle solution does not change
its profile too much locally, if we alter its boundary conditions far away
from the given neighborhood.

We achieve this by showing that comparison principle holds between two
obstacle solutions even if their boundary data are not ordered, if the
domain of comparison is far away from the boundary of the original
domain.
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Localization

Let u and v satisfy

u(x , t) ≤ u(x − ξ, t − τ1) and v(x , t) ≤ v(x + ξ, t + τ2),

where |ξ · ν| ≤ τ1, τ2.

Proposition (Local comparison)

Let u, v be a subsolution and supersolution with above property. Suppose

τ1, τ2 ≤ e−LT , where L is the Lipschitz constant for g . Then the following

holds: If u(·, 0) < v(·, 0) in |(x − x0)| ≤ R(0), then

u(·, t) ≤ v(·, t) in {|x − x0| ≤ R(t)} for 0 ≤ t ≤ T ,

Here R(T ) := C (|ξ|)e2L(T−t).
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Birkhoff properties

The following property is central in proving the “local comparison”.

The maximal and minimal obstacle solutions feature space-time
monotonicity (Birkhoff) properties. For instance ūs,ν satisfy

ūs,ν(x + ξ, t + τ) ≤ ūs,ν(x , t),

if ξ ∈ Z
d and if sτ − ξ · ν ≤ 0. In particular if ν is irrational then for any

small τ > 0 one can find ξ ∈ Z
d such that sτ ≤ ξ · ν ≤ Cτ .
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Proof of local comparison
To prove the local comparison, consider ṽ(x , t; h) := inf |x−y |≤h(t) v(y , t),
where h(t) > 0 decreases fast enough over time so that ṽ is a
supersolution to the flow. Since u < v at t = 0, u < ṽ for

Suppose that ṽ(·; h) crosses u from above at (x0, t0) in
{|x | ≤ R(t)} × {0 ≤ t ≤ t0} for the first time. Note that for t ≤ t0 and
for |x | ≤ R(t − τ1),

u(x , t) ≤ u(x − ξ, t − τ1) ≤ ṽ(x − ξ, t − τ1) ≤ ṽ(x , t +∆t).

In particular we have, for ∆t = τ2 − τ1,

u(·, t −∆t) ≤ ṽ(·, t) in Σ(t) := |x − x0| ≤ R(t − t2)− R(t).

Due to the finite propagation property, if ∆t is small enough compared to
h2(t), then it follows that

u(·, t) ≤ ṽ(·, t; h/2) in Σ(t).
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Proof of local comparison

Let us define the space-time domain Σ := ∪t0−1≤t≤t0Σ(t)× {t}, then

u ≤ ṽ(·; h/2) in Σ.

In addition, by our assumption on comparison domain,

u ≤ ṽ(·; h) in Σ ∩ {t = t0 − 1} ⊂ {|x | ≤ R(t0 − 1)}.

If Σ(t) is wide enough, a local perturbation of ṽ yields that u ≤ ṽ(·; h) at
(x0, t0), which is a contradiction.
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A local perturbation by Inf-convolution

Lemma

If u is a supersolution, then so is

ũ(x , t) := inf
|x−y |≤h(t)ϕ(x)

u(y , t),

if

ϕ(x) = 1− c |(x − x0)|2 where c << 1.

This type of local perturbation is originally introduced in
Athanasoupolos-Caffrarelli-Salsa (1996) for the Stefan problem.
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Detachment from the obstacle

Local comparison yields the following result:

Proposition

Let ν be a irrational direction and let uε := ūs,ν be given with the obstacle

speed s > s̄(ν) + δ and defined in |x | ≤ Ce2LT , t ∈ [0,T ]. Then we have

uε(x , t) ≤ Os,ν(x , t)−
δ

2
(t − t0) in |x | ≤ Ce2LT/2

where t0 = t(ν).

Hence s̄ describe the maximal homogenized speed for all solutions uε,
regardless of their boundary data assigned far away from the reference
point. Thus s̄ can be uniquely characterized as the “head speed” for
solutions with general initial data.
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Continuity properties

Another consequence of local comparison is the continuity of s̄ and s as ν
varies. Here one needs to compare fronts with different direction of
propagations, for which standard comparison principle fails.
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Open Questions

In the graph (laminar) setting, it is shown that small oscillation of g
guarantees homogenization. Would the same hold for general periodic
media?

Can we characterize further the head and tail speeds in terms of g?
(In laminar setting, when ν = en, head speed s̄ has a variational
formula by Cesaroni-Novaga).

Generalized traveling waves in general media?
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Thank you for your attention!
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