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Head and Tail speeds of Mean curvature flow with

forcing

Inwon Kim (joint with Hongwei Gao)

Dept. of Mathematics, UCLA

IKim (UCLA)
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Let g : RY — R be a Lipschitz function which is periodic with respect to
translations by Z?. We consider the evolution of sets (Q;):>0 in R? by the

flow N
V =—¢ck +g(g) on 0.

Here k = ry ¢ denotes the mean curvature of 0Q; at given boundary
point, positive if convex with respect to ;.

Note that zooming in by the coordinate change (x,t) — (x/e, t/ec) we

have N
V = —k + g(x) on 0Q.

We are interested in the behavior of Q; or Qt as e — 0.
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Literature in periodic media

o Lions-Souganidis (2005): Homogenization result for positive g, when
|Dg|/g? is sufficiently small.

o Cesaroni-Novaga (2013): In laminar setting g(x) = g(x’, x,) for periodic
graph solutions {x, = u(x’, t)}, existence of generalized traveling wave
solution with the maximal speed.

o Caffarelli-Monneau (2014): Homogenization for positive and Lipschitz g
in two space dimensions. A counterexample in three dimensions, based on
the existence of an unbounded stationary solution.

o Cardaliaguet-Lions-Souganidis (2009): examples of pinning and failure of
homogenization with sign changing g.
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We employ the level set PDE
up = F(D?u, Du, x) = | Dul[tr {D2u€ (/ — D ® Bu\)} +g(x), (1)

which is a singular and nonlinear parabolic equation.

Here the initial data is given as a uniformly continuous function up(x), and
we will study the zero level set of u(x, t).
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We are interested in the description of maximal and minimal asymptotic
speed ("head” and “tail” speed) for u. in general setting, where we may
not have plane-like solutions and homogenization fails.
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Theorem

There exist two upper- and lower-semicontinuous functions 5,5 : S — R,
s < § with the following properties:

@ 5 and s are continuous.
o Let u* solve (1) with initial data up(x) = (x — xo) - v, then
limsup u®(x,t) =5(v)t — (x — x0) - v
e—0

and

liminf u®(x,t) = s(v)t — (x — xo) - V.
e—0
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In unit scale (¢ = 1) this means

sup {x-v:ul(x,t) =0}

)=, :
inf{x-v:uvl(x,t)=0
s(v) = lim in {x v:u(x,t) }
t—o00 t

For any u! with “flat” initial data.
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Theorem (General Initial data)

If u® solve (1) with uniformly continuous initial data ug, the following
holds in the viscosity sense:

*

limsup u® solves uy < §(—51)\Du|
and

liminf u® solves  uy > §(—5?1)|Du\.

In particular, if $ = s then u® uniformly converges to the unique viscosity
solution of uy = 5(—Du)|Du| with initial data ug.
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Laminar case: travelling waves

Here we assume that g(x) = g(x’, x,) and set £ = 1.

In this case, starting with initial set given as graph 'y = {x, = Up(x’)},
one can show that the interface I'; stays as a graph {x, = U(x, t)} and U
solves the PDE

Ur DU

V(1 + |DUP) V'(\/1+|DU\2

It follows that U is locally Che in space, uniformly in time, if [ moves
with finite speed, which is the case for us if Uy is linear.

)+ g(x") in R™! x (0, 00).

Based on this regularity we obtain generalized traveling wave solutions.
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Traveling waves in Laminar media

Consider the direction v € S? with v - e, # 0.
Theorem

Suppose s1 := 5(v) > sy := s(v). Then there are disjoint, open,
non-empty sets Ey, E; in R" and functions Uy : E; — (—00,0],
U : E; — [0, 00) such that the following is true:

(a) E; and Ui(x') + x' - v are Z"1-periodic.

(b) The sets OE; x (—o0,0), i = 1,2, are stationary solutions.
(c) Ui — —o0 as x — 0E; and Uy — +00 as x — 0E;.

(d) The surfaces T := {x, = Ui(x") + sit},i = 1,2, moves with

V = —k + g away from the “obstacle” {x, = sjt}.
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Traveling waves in Laminar media

While our approach allows to describe traveling waves both at maximal
and minimal speed, we only recover partial traveling waves away from their
highest and lowest positions, as described in (c). For instance in the
scenario where there exists multiple localized traveling waves at the same
asymptotic speed at s;, our method appears to capture the most external
profile of these waves.

When v = e,, the maximal traveling wave with maximal speed was
constructed by Cesaroni and Novaga using variational method.
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Homogenization in Laminar media

Corollary

If homogenization fails for graph solutions in laminar media, then there
exists a set E of prescribed mean curvature in T"~% with CY* boundary,
satisfying —x = g on OE N T 1.

Hence if we can guarantee that such E does not exist in T"~! for a given
function g, then we would have proven homogenization in n-dimensional
laminar setting.

It seems difficult however to understand properties of sets of prescribed
mean curvature in general, when they are not local minimizers of an
energy.
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Using the local traveling waves constructed above, one can conclude the
following:

Theorem
There exists C = C(n) such that If oscg < C then 5(v) = 5(v) for all
directions with v - e, > ¢y. C(3) = /2.

Above result when v = e, was known by Cesaroni and Novaga.
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Homogenization in general media: criteria

When oscg is large, one can generate examples of fronts with different
head and tail speeds, adopting the arguments of Caffarelli and Monneau.
These examples are however restricted to laminar media.

In general media much less is known. Here the best known criteria for
homogenization is the smallness of |Dg|/g?, in which case one obtains a
global, Lipschitz continuous, traveling wave solution. It is not clear
whether one could improve this restriction.
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Cell problem approach

Typically to show that homogenization holds for (1), one starts with an
Ansatz

uE(x, t) = uO(x, t) + ev(g) + o(e),

where v solves a cell problem given by the limit profile u®, which in our
setting is a linear profile x - v — st for a unit vector v. The idea is then to
look for s = s(v) for which there exists a Z"-periodic solution v of the cell
problem

F(D?v,v + Dv,y) = s in [0,1]".

The existence and bounds of solution v for the above problem (or an
approximate version of it) hence confirms the Ansatz as well as the
homogenizatio of u°.
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Furthermore the regularity of the cell solution v translates into the
corresponding regularity properties of the limit speed s.

o When (2l is small, v is Lipschitz continuous, and s(v) is Lipschitz
continuous (Lions-Souganidis)

e In two dimensions, v and s(v) are continuous (Caffarelli-Monneau)

e in two dimensional laminar case, v and s(v) are Lipschitz continuous.
(Cesaroni-Novaga)
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Cell problem: difficulties

When homogenization is not expected, there may be no global limit profile
for u€, let alone an asymptotic planar profile. Instead we introduce
“obstacle cell problems”, which amounts to looking for the maximal
subsolution and minimal supersolution of a “cell problem”, yielding
descriptions for limsup and liminf of u®.

These solutions are not periodic and feature very low regularity in general...
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Obstacle approach and our contribution

The obstacle approach was first introduced by Caffarelli, Souganidis and
Wang for random homogenization of elliptic PDEs, and later adopted by
Kim and Pozar for free boundary problems. They share the common
feature with our problem that there are no standard cell problems one can
expect to solve, either due to the non-periodic environment or
non-periodic evolution of the free boundaries.

On the other hand, in above results homogenization is expected to hold,
and the obstacle solutions are asymptotically regular in these settings.

Our contribution in this paper is thus introducing a “cell problem” type
approach for a problem where homogenization is not expected to occur in
general, or more precisely when large-scale regularity is missing.
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Head and Tail speed: Definition

Set ¢ = 1. For given s € R and vS", we define i, by the maximal
subsolution of (1) which lies below the obstacle O, (x, t) := st — v - x.
Then we define the head speed by

5(v) :=inf{s: Us, < Os, after some time t > T}.

Similarly s() can be defined using u, ,: the minimal supersolution which
lies above the obstacle Os .

When defined in finite domain, we impose boundary conditions to coincide
with obstacle.
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Localization of obstacle solutions

To characterize the asymptotic normal velocity in terms of 5 and s for
initial data that are not asymptotically affine, it is necessary to localize the
obstacle solutions to conclude that their head and tail speed is obtained
independent of its constraint on far-away lateral boundary.

In other words, we should show that the obstacle solution does not change
its profile too much locally, if we alter its boundary conditions far away
from the given neighborhood.

We achieve this by showing that comparison principle holds between two
obstacle solutions even if their boundary data are not ordered, if the
domain of comparison is far away from the boundary of the original
domain.
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Localization

Let v and v satisfy
u(x,t) <u(x—&t—m1)and v(x, t) < v(x+ & t+ 1),
where [£ - V| < 11, To.

Proposition (Local comparison)

Let u,v be a subsolution and supersolution with above property. Suppose
11,7 < e LT, where L is the Lipschitz constant for g. Then the following
holds: If u(-,0) < v(-,0) in |(x — x0)| < R(0), then

u(-,t) <v(-,t)in{|x —xo| < R(t)} for0 <t < T,

Here R(T) := C(|])e?H(T—1).

IKim (UCLA) Head and Tail speeds of Mean curvature flow 21 /29



Birkhoff properties

The following property is central in proving the “local comparison”.

The maximal and minimal obstacle solutions feature space-time
monotonicity (Birkhoff) properties. For instance is, satisfy

Usy(x + &t +7) < Osu(x,t),

if ¢ € Z9 and if s — &-v < 0. In particular if v is irrational then for any
small 7 > 0 one can find &€ € Z9 such that st < & -v < Cr.
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Proof of local comparison

To prove the local comparison, consider V(x, t; h) := inf|,_y|<pe) v(y; t),
where h(t) > 0 decreases fast enough over time so that ¥V is a
supersolution to the flow. Since u < vatt =0, u < v for

Suppose that ¥(-; h) crosses u from above at (xp, to) in
{|x] < R(t)} x {0 <t <t} for the first time. Note that for t < tg and

for |x] < R(t — 1),

ulx,t) <ulx—&t—m1) < V(x—¢&t—m) < U(x,t+ At).
In particular we have, for At = 7 — 71,

u(-,t — At) < V(- t) in (t) := |x — xo| < R(t — t2) — R(¢).

Due to the finite propagation property, if At is small enough compared to
h?(t), then it follows that

u(-,t) < V(- t; h/2) in X(2).
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Proof of local comparison

Let us define the space-time domain X := U _1<¢<s 2 (t) X {t}, then
u<v(;h/2) inZXL.
In addition, by our assumption on comparison domain,
u<iv(;h) inEn{t=t—1} C{|x| <R(to —1)}.

If £(t) is wide enough, a local perturbation of ¥ yields that u < ¥(-; h) at
(x0, to), which is a contradiction.
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A local perturbation by Inf-convolution

Lemma
If u is a supersolution, then so is

(v, 1),

i(x,t) = inf u
Ix—y|<h(t)e(x)

if

o(x) =1 — c|(x — xo)|? where c << 1.

This type of local perturbation is originally introduced in
Athanasoupolos-Caffrarelli-Salsa (1996) for the Stefan problem.
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Detachment from the obstacle

Local comparison yields the following result:

Proposition

Let v be a irrational direction and let u® := s, be given with the obstacle
speed s > 5(v) + & and defined in |x| < Ce?tT t € [0, T]. Then we have

uf(x,t) < Osp(x,t) — g(t —to) in|x| < Ce*tT)2

where ty = t(v).

Hence 5 describe the maximal homogenized speed for all solutions u*,
regardless of their boundary data assigned far away from the reference
point. Thus 5 can be uniquely characterized as the "“head speed” for
solutions with general initial data.
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Continuity properties

Another consequence of local comparison is the continuity of 5 and s as v
varies. Here one needs to compare fronts with different direction of
propagations, for which standard comparison principle fails.
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Open Questions

@ In the graph (laminar) setting, it is shown that small oscillation of g
guarantees homogenization. Would the same hold for general periodic
media?

@ Can we characterize further the head and tail speeds in terms of g7
(In laminar setting, when v = e,,, head speed 5 has a variational
formula by Cesaroni-Novaga).

@ Generalized traveling waves in general media?
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Thank you for your attention!
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