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Recurrence on abelian coverings

Albert Fathi

Berkeley, November 30, 2018



Motivations

The question I will be treating is of the following type:

Assume f : N → N is a homeomorphism of a compact
manifold which is chain-recurrent (definition will be given
later), and π : N̄ → N is a covering to which f lifts as
f̄ : N̄ → N̄ . Can you say something about the
chain-recurrence of f ?

It is motivated by John Franks approach to the Poincaré-Birkhoff
theorem, and also by the problem on understanding Aubry sets for
lifted Lagrangians on the torus Tn to R

n.

I obtained a (partial) result that I will explain below.

However, I had to look for applications that motivated such an
abstract result.

In a very contorted way, I realized that what I had obtained leads
to a simpler of a result on Riemannian metrics with negative
curvature.



Geodesic flows

Rather than to start by addressing the problem of lifting
chain-recurrence, I will first start with the apparently totally
unrelated consequence on geodesic flows.

To explain this, we fix a compact connected Riemannian manifold
M.

Assume that the Riemannian metric g on M is of negative
curvature.

Call S(M) the unit tangent bundle.

The geodesic flow (gt)t∈R on S(M) is Anosov and preserves the
natural Riemannian measure on S(M).

Therefore we know that it is ergodic, and periodic geodesics are
dense.

Note also that any given non-zero homotopy class contains exactly
one periodic geodesic.

Therefore we cannot have a density theorem of periodic geodesics
in a given homotopy class.



Theorem

Assume the geodesic flow of the compact Riemannian manifold M
with negative curvature. If α ∈ H1(M,Z) is an integral homology
class, then the set of closed geodesics γ with homology class
[γ] = α is dense in S(M).

Although we give a low tech proof of this result, it was known in
the 1990’s. For surfaces of constant negative curvature, it can be
found in Gottschalk-Hedlund’s book. Their argument works for
constant negative curvature in all dimensions.

In fact, the result is also true if we only assume that the geodesic
flow is Anosov, and even for a class of general Anosov flows.

This result follows from work by many people counting closed
orbits in homology classes starting from surfaces of constant
curvature to general Anosov flows.

A (probably non exhaustive) list of people comprises: Katsuda,
Sunada, Philipps, Sarnak, Lalley, Pollicott, Epstein, Sharp.



Although these works addressed primarily the problem of counting
closed orbits in a given homology classes, some of them also
obtained equidistribution of closed orbits in a homology class for a
measure of full support, which implies density.

This equidistribution result is due to S. Lalley (1989) for geodesic
flows on surfaces of (variable) negative curvature, to A. Katusda
and T. Sunada (1990) for a class of Anosov flows that include all
the geodesic flows that are Anosov. R. Sharp (1993) generalized
the counting and equidistribution results to a larger class of
Anosov flows

After I gave a lecture in Chapel Hill in Spring 2018, Pat Eberlein
came up with an elementary “group argument” proof, which works
for manifolds of (variable) negative curvature.



In the sequel we will concentrate on the case where the homology
class is zero in the theorem.

An important feature of Anosov flows is the so-called Anosov
closing lemma (in generalized form) known also as the shadowing
property.
Namely if we have an almost orbit it is close to a genuine orbit.
(In the theory of manifolds of negative curvature, this property is
known as a quasi-geodesic is “close” to a geodesic.)

To explain this property, we recall a few notions from general
dynamical system theory. We do it for discrete systems, adaptation
to flows is well-known.
For a continuous map f of the metric space (X , d), an ǫ-pseudo
orbit (or ǫ-chain), with ǫ > 0, is a sequence of points x0, . . . , xn,
with n ≥ 1, such that d(f (xi ), xi+1) < ǫ.



We should think of an ǫ-pseudo orbit (or ǫ-chain) as an orbit up to
error ǫ.

x0

f(x0)
f(x1)

f(xn−1)x1

x2

xn−1

xn

≤ ǫ

≤ ǫ

≤ ǫ

Such an ǫ-pseudo orbit is said to be closed if x0 = xn.



A point x ∈ X is chain-recurrent for f is for every ǫ > 0, we can
find an ǫ-pseudo orbit x0, . . . , xn, for some n ≥ 1, with
x0 = xn = x , or equivalently, for every ǫ > 0, there is a closed
ǫ-pseudo orbit through x .

The set of chain-recurrent points for f is denoted by R(f ).

If X = R(f ), then we say that f is chain-recurrent.

This set R(f ) depends on the choice of the metric d , but two
uniformly equivalent metrics give rise to the same chain-recurrent
set.

In particular, if X is compact, the set R(f ) is independent of the
choice of the metric d defining the topology on X .

We say that f : X → X is chain-transitive if for any x , y ∈ X and
any ǫ > 0, there is an ǫ-pseudo orbit x0, . . . , xn with
x0 = x , xn = y .

If X is connected then f : X → X is chain-transitive if and only if
if it is chain-recurrent.



The shadowing property for a continuous map f of the metric
space (X , d) is:

Shadowing Property

For every α > 0, there exists an ǫ > 0 such that for any ǫ-chain
x0, . . . , xn, with n ≥ 1 (but arbitrary) we can find a point x ∈ M
such that d(f i (x), xi ) ≤ α. We say that the ǫ-pseudo orbit is
α-shadowed by the orbit of x .
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≤ ǫ
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Important fact: ǫ does not depend on n.



An Anosov diffeomorphism f of the compact manifold N enjoys
the shadowing property. This is the Anosov closing lemma.
Moreover, in this case any closed ǫ-chain of length n can be
shadowed by a periodic point of period (dividing) n.
Therefore, an Anosov diffeomorphism f is chain recurrent if and
only if its periodic points are dense.
Consider Ñ → N a covering of the compact Riemannian manifold
N. Endow Ñ with the distance d̃ coming from the lift to Ñ of the
Riemannian metric on N.
If f is an Anosov diffeomorphism on N that lifts to a
diffeomorphism f̃ of Ñ, it is not difficult to see that f̃ has the
shadowing property.

Hence, to show that the f̃ -periodic points are dense in Ñ , it
suffices to show that f̃ is chain recurrent.



Let us try to apply this idea to reduce the following theorem

Theorem

If M is a compact Riemannian manifold whose geodesic flow is
Anosov, the closed geodesics which are homologous to 0 are dense
in the unit tangent bundle S(M).

to a more general fact.
We denote by π : M̄ → M the maximal abelian covering of M, i.e.
the regular (or Galois) covering of M whose Galois group is
H1(M,Z).
We endow M̄ with the Riemannian metric pulled from M. A closed
geodesic in M is homologous to 0 if and only if it is the image of a
closed geodesic in M̄.
Hence, it suffices to show that the closed geodesics are dense in M̄.
Since as we saw above the geodesic flow on S(M̄) has the
shadowing property, it suffices to prove that the geodesic flow is
chain recurrent on S(M̄).



Therefore the previous theorem for the negative curvature case
follows from

Theorem (Chain-recurrence for geodesic flow)

Let M be an arbitrary compact Riemannian manifold (not
necessarily of negative curvature) of dimension at least 2, then the
geodesic flow on M̄, the maximal abelian cover of M, is
chain-recurrent on S(M̄).

Remark (V. Gelfreich)

Not true for M = T: the geodesic flow on (flat) R is not chain
recurrent. The problem is that S(T) is not connected, and the
geodesic flow on S(T) is not chain transitive.

This Theorem is baffling. At first I thought it was not correct.
Why? If M = T

k , k ≥ 2 with the flat metric, how can its lift to R
k

have any recurrence property (except for fixed points on the 0
section).The geodesic flow on the unit tangent bundle is
dissipative. Nothing can be more violently dissipative than that!
How can it enjoy any type of recurrence?



Answer: Regular n-gons!

(n− 2)π/n

2π/n

A regular n-gon with side equal 1 has angles (n − 2)π/n → π.
Therefore if you follow the unit tangent vectors of the sides of such
an oriented n-gone, it will be an ǫ-pseudo orbit for n large.



In fact, we will deduce, the chain-recurrence theorem above on the
geodesic flow from an even more general one.
We now explain this more general setting.
Consider an abelian covering π : N̄ → N of the compact manifold
N. The Galois group of π : N̄ → N is an abelian group of finite
type. To simplify the setting we will make the assumption that this
group has no torsion.
Hence we can assume that it is Zk . Therefore N = N̄/Zk .
We denote the action of Zk on N̄ by

(n, x̄) 7→ x̄ + n, n ∈ Z
k , x̄ ∈ N̄.

From the general theory of covering, we can find a smooth map
ϕ̄ : N̄ → R

k such that

ϕ̄(x̄ + n) = ϕ̄(x) + n, n ∈ Z
k , x̄ ∈ N̄.

In fact, the map ϕ̄ yields a map ϕ : N → T
k such that the

covering π : N̄ → N is the pull-back by ϕ of the canonical covering
R
k → T

k .
It is useful to note that by compactness of N, the smooth map ϕ is
Lipschitz. Therefore ϕ̄ is also Lipschitz on N̄.



Theorem (Lifting chain-recurrence)

Assume that f : N → N is a chain-transitive homeomorphism that
lifts to a homeomorphism f̄ : N̄ → N̄ such that

f̄ (x̄ + n) = f̄ (x̄) + n, n ∈ Z
k , x̄ ∈ N̄.

If f̄ is not chain-recurrent, then there exists a non-zero linear form
L : Rk → R and a finite constant K ≥ 0 such that

Lϕ̄(f̄ ℓ(x̄))− Lϕ̄(x̄) ≥ −K , for every x̄ ∈ N̄, and every ℓ ≥ 0.

I will explain first the meaning of the theorem. Assume M = T
k

and the cover is Rk → T
k . In this case, we can take ϕ = IdTk .



The theorem for the T
k case is then:

Theorem (Lifting chain-recurrence for Tk)

Assume that f : Tk → T
k is a chain-transitive homeomorphism

that lifts to a homeomorphism f̄ : Rk → R
k such that

f̄ (x̄ + n) = f̄ (x̄) + n, for all n ∈ Z
k and x̄ ∈ R

k . If f̄ is not
chain-recurrent, then there exists a non-zero linear form
L : Rk → R and a finite constant K ≥ 0 such that

L(f̄ ℓ(x̄))− L(x̄) = L(f̄ ℓ(x̄)− x̄) ≥ −K ,

for every x̄ ∈ R
k , and every ℓ ≥ 0.

That “basically” means that the orbits of f̄ are contained in a
unique affine half space of Rk .
This of course not exactly true since orbits can start outside any
affine half space, so you have to subtract the origin x̄ of the orbit.
Therefore, the theorem says that if f̄ is not chain-recurrent, then
the set

SDI(f̄ ) = {f̄ ℓ(x̄)− x̄ | x̄ ∈ R
k , ℓ ≥ 0}

is contained in an affine half space of Rk .



We can also reformulate the general case as:

Theorem (Lifting chain-recurrence)

Assume that f : N → N is a chain-transitive homeomorphism that
lifts to a homeomorphism f̄ : N̄ → N̄ such that

f̄ (x̄ + n) = f̄ (x̄) + n, n ∈ Z
k , x̄ ∈ N̄.

If f̄ is not chain-recurrent, then set

SDIϕ̄(f̄ ) = {ϕ̄(f̄ ℓ(x̄))− ϕ̄(x̄) | x̄ ∈ R
k , ℓ ≥ 0}

is contained in an affine half space.

Corollary

In the situation above, assume that, for every n ∈ Z
k \ {0}, we can

find a point x̄n such that f̄ ℓn(x̄n) = x̄n + n, for some ℓn ≥ 1.
Then f̄ is chain recurrent.



To prove the corollary, note that ϕ̄ commutes with the translation
by the vectors n ∈ Z

k .
Therefore from f̄ ℓn(x̄n) = x̄n + n, we get

ϕ̄(f̄ ℓn(x̄n)) = ϕ̄(x̄n + n) = ϕ̄(x̄n) + n.

Hence
ϕ̄(f̄ ℓn(x̄n))− ϕ̄(x̄n) = n.

This forces the set

SDIϕ̄(f̄ ) = {ϕ̄(f̄ ℓ(x̄))− ϕ̄(x̄) | x̄ ∈ R
k , ℓ ≥ 0}

to contain Z
k \ {0}.

Therefore SDIϕ̄(f̄ ) cannot be contained in an affine half space.
The lifting theorem implies that f̄ ischain-recurrent.



The corollary can be applied to the case of the geodesic flow since
any non-trivial homotopy (hence homology) class of curves
contains a closed geodesic. Note that S(M) is connected if the
dimension of M is ≥ 2. Therefore, in this case, the geodesic flow is
chain-transitive
This provides a proof of

Theorem

Let M be an arbitrary compact connected Riemannian manifold
(not necessarily of negative curvature) of dimension ≥ 2, then the
geodesic flow on M̄, the maximal abelian cover of M, is
chain-recurrent on S(M̄).

We now sketch the proof of the Lifting chain-recurrence theorem.

Theorem (Lifting chain-recurrence)

Assume that f : N → N is a chain-transitive homeomorphism that
lifts to f̄ : N̄ → N̄ with f̄ (x̄ + n) = f̄ (x̄) + n, n ∈ Z

k , x̄ ∈ N̄. If f̄ is
not chain-recurrent, there exists a non-zero linear form L : Rk → R

and a finite constant K ≥ 0 such that Lϕ̄(f̄ ℓ(x̄))− Lϕ̄(x̄) ≥ −K.



We choose a Riemannian metric on N, and we lift it to N̄ via the
covering projection π : N̄ → N.
We use on N and N̄ the distances d and d̄ coming from the
Riemannian metrics.

Note that we have:

(a) d̄(x̄ + n, ȳ + n) = d̄(x̄ , ȳ), for all n ∈ Z
k .

(b) d(π(x̄), π(ȳ)) = minn∈Zk d̄(x̄ , ȳ + n).

(c) Moreover, the covering map π : N̄ → N is a local isometry.



We now introduce the Pageault barriers P on N and P̄ on N̄.
For x0, . . . , xℓ, ℓ ≥ 1 in N, we set

p(x0, . . . , xℓ) = max
i=0,ℓ−1

d(xi+1, f (xi )).

(resp. For x̄0, . . . , x̄ℓ, ℓ ≥ 1 in N̄, we set

p̄(x̄0, . . . , x̄ℓ) = max
i=0,ℓ−1

d̄(x̄i+1, f̄ (x̄i )).)

Then for x , y ∈ N, we set

P(x , y) = inf{p(x0, . . . , xℓ) | ℓ ≥ 1, x0 = x , xℓ = y}.

(resp. for x̄ , ȳ ∈ N̄, we set

P̄(x̄ , ȳ) = inf{p̄(x̄0, . . . , x̄ℓ) | ℓ ≥ 1, x̄0 = x̄ , x̄ℓ = ȳ}.)



The properties that we are going to use are:
(1) P(x , x) = 0 (resp. P̄(x̄ , x̄) = 0) if and only if x is
chain-recurrent for f (resp. x̄ is chain-recurrent for f̄ ).
(2) P(x , f (x)) = 0, since p(x , f (x)) = d(f (x), f (x)) = 0 (resp.
P̄(x̄ , f̄ (x̄)) = 0).
(3) [Ultrametric property] P(x , z) ≤ max[P(x , y),P(y , z)] by
concatenation of chains (resp. P̄(x̄ , z̄) ≤ max[P̄(x̄ , ȳ), P̄(ȳ , z̄)]).
(4) P̄(x̄ + n, ȳ + n) = P̄(x̄ , ȳ), for all n ∈ Z

k .
(5) P(π(x̄), π(ȳ)) = infn∈Zk P̄(x̄ , ȳ + n).

Since we are assuming that f is chain-recurrent, from (1) we
obtain that P(x , x) = 0, for all x ∈ N.
Therefore from (5) we get

inf
n∈Zk

P̄(x̄ , x̄ + n) = 0, for every x̄ ∈ N̄.



If we assume that f̄ is not chain-recurrent, we can find x̄0 ∈ N̄
such that P̄(x̄0, x̄0) > 0. If ǫ is fixed, with P̄(x̄0, x̄0) ≥ ǫ > 0, we
define the subset Γ ⊂ Z

k by

Γ = {n ∈ Z
k | P̄(x̄0, x̄0 + n) < ǫ}.

By choice of ǫ, this subset Γ does not contain {0}.
From infn∈Zk P̄(x̄0, x̄0 + n) = 0, it is not empty.
Moreover Γ is closed under addition.
In fact, by the ultrametric property (3)
P̄(x̄ , z̄) ≤ max[P̄(x̄ , ȳ), P̄(ȳ , z̄)], we obtain
P̄(x̄ , x̄ + n +m) ≤ max[P̄(x̄ , x̄ + n), P̄(x̄ + n, x̄ + n +m)]. But by
property (4) P̄(x̄ + n, ȳ + n) = P̄(x̄ , ȳ). Hence
P̄(x̄ + n, x̄ + n +m) = P̄(x̄ , x̄ +m). Therefore

P̄(x̄ , x̄ + n +m) ≤ max[P̄(x̄ , x̄ + n), P̄(x̄ , x̄ +m)],

which clearly implies that Γ is stable under addition.



Since Γ ⊂ Z
k is stable under addition and does not contain 0, we

can conclude that the convex envelop of Γ does not contain 0.
By Hahn-Banach theorem, we can find a non-zero linear form
L : Rk → R such that L ≥ 0 on Γ.
Using that f is chain-transitive, we now explain why there exists a
finite constant K ≥ 0, such for every x̄ , ȳ ∈ N̄, with P̄(x̄ , ȳ) < ǫ,
we have

Lϕ̄(ȳ)− Lϕ̄(x̄) ≥ −K .

Since P̄(x̄ , f̄ ℓ(x̄)) = 0, this will prove

Lϕ̄(f̄ ℓ(x̄))− Lϕ̄(x̄) ≥ −K .

To find K , we need:

Lemma

Assuming f chain-transitive on N, there exists a constant
Kǫ < +∞ (depending on ǫ) such that, for every x , y ∈ N, we can
find x̄ , ȳ ∈ N̄, with x = π(x̄), y = π(ȳ), satisfying

P̄(x̄ , ȳ) < ǫ and d̄(x̄ , ȳ) ≤ Kǫ.



Assume P̄(x̄ , ȳ) < ǫ. We apply the Lemma to π(x̄0), π(x̄) to find
m1,m2 ∈ Z

k such that

P̄(x̄0 +m1, x̄ +m2) < ǫ and d̄(x̄0 +m1, x̄ +m2) ≤ Kǫ.

By the invariance properties of both P̄ and d̄ , setting
m = m1 −m2, we get

P̄(x̄0 +m, x̄) < ǫ and d̄(x̄0 +m, x̄) ≤ Kǫ.

In the same way, we can find m′ ∈ Z such that

P̄(ȳ , x̄0 +m′) < ǫ and d̄(ȳ , x̄0 +m′) ≤ Kǫ.

In particular, by the ultrametric property of P̄, we get

P̄(x̄0 +m, x̄0 +m′) < ǫ.

Since P̄(x̄0 +m, x̄0 +m′) = P̄(x̄0, x̄0 +m′ −m), this implies
m′ −m ∈ Γ. Therefore

L(m′ −m) ≥ 0.



Since ϕ̄ is Lipschitz, from d̄(x̄0 +m, x̄) ≤ Kǫ and
d̄(ȳ , x̄0 +m′) ≤ Kǫ, we obtain

|Lϕ̄(x̄0 +m′)− Lϕ̄(ȳ)| ≤ ‖L‖ Lip(ϕ̄)Kǫ

|Lϕ̄(x̄)− Lϕ̄(x̄0 +m)| ≤ ‖L‖ Lip(ϕ̄)Kǫ.

But Lϕ̄(x̄0 + z) = L[ϕ̄(x̄0) + z ] = Lϕ̄(x̄0) + L(z), for every z ∈ Z
k .

Hence, with K ′ = 2‖L‖ Lip(ϕ̄)Kǫ, we obtain from the inequalities
above

|L(m′ −m)− [Lϕ̄(ȳ)− Lϕ̄(x̄)]| ≤ K ′.

Using L(m′ −m) ≥ 0, this yields the desired inequality

Lϕ̄(ȳ)− Lϕ̄(x̄) ≥ −K ′.



It remains to prove the Lemma:

Lemma

Assuming f chain-transitive on N, there exists a constant
Kǫ < +∞ (depending on ǫ) such that, for every x , y ∈ N, we can
find x̄ , ȳ ∈ N̄, with x = π(x̄), y = π(ȳ), satisfying

P̄(x̄ , ȳ) < ǫ and d̄(x̄ , ȳ) ≤ Kǫ.

Since h is chain-transitive, we have

0 = P(x , y) = inf{P̄(x̄ , ȳ) | π(x̄) = x , π(ȳ) = y}.

Hence
N × N = π × π{(x̄ , ȳ) | P̄(x̄ , ȳ) < ǫ}.

The open set O = {(x̄ , ȳ) | P̄(x̄ , ȳ) < ǫ} is the increasing union of
the open sets

On = {(x̄ , ȳ) | P̄(x̄ , ȳ) < ǫ, d̄(x̄ , ȳ) < n}.

Since π×π is an open map, the compactness of N×N implies that

N × N = π × π(On), for n large.






