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CHARACTERS OF CATEGORICAL REPRESENTATIONS:
THEORY AND APPLICATIONS

CONSTANTIN TELEMAN

For this talk, let G be a compact (usually connected) Lie group. The agenda: a

survey of what we currently know, with details left out to make sure we talk about

as much as possible.

Why study categorical representations? First, categories are for 2D quantum field

theories are what vector spaces are for 1D QFTs. Second, there are many examples

of categorical representations that come from symplectic geometry.

If X is a compact symplectic manifold with a Hamiltonian G-action, then G acts

on F(X) the Fukaya category.

How do we begin studying representations? Start with the character theory. In

fact, the character theory in this categorical settings seems to have “cleaner” output

than input, e.g. the input is a derived category but the output is underived.

We put the following hypothesis on the categories on which G will act: they will

be smooth, proper, Calabi-Yau, and their deformation theory is unobstructed . This

is an unlikely but ideal situation which will still arise in practice.

Note: categorical representation theory is not an analogue of representation theory

of group actions on a vector space, but rather an analogue of topological actions on
a vector space. That is, a flat vector bundle over BG gives a local system of ⇡0BG-

actions. If we take complexes of vector bundles, we then get information about our

group past ⇡0.

The topological classification of such vector bundles is the cohomology group

H1
(BG; GL(V )disc) giving the coe�cients the discrete topology. If G is connected,

we don’t see anything here ordinarily.

Notes by Ian Coley.
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2 CONSTANTIN TELEMAN

However, if we replace V the vector space by a chain complex of vector spaces, then

we can describe the above as the set of di↵erential graded algebra maps

C⇤(G) ! End(V ), and that’s the description that we are going to categorify.

At just the level of vector spaces, we have a total answer about topological repre-

sentations of V but it’s a but nasty to compute. We also have the total story once

we lift to categories, but the answer is (surprisingly) nicer.

Example 1. Let G = T a torus, acting on Vect the category of complex vector

spaces. Write T = t/⇡1. Then if we look at the topological actions of T , the

contractible parts of T must act trivializably, so t acts trivializably and ⇡1 acts

trivially. An automorphism of the trivial action of ⇡1 on Vect correponds to a map

⇡1 ! C⇥
, i.e. a point in the complexified dual torus T_

C .

So T_
C = H2

(BT ;C⇥
disc). But something is wrong here: if we let G = SO(2) or

SU(n), this group vanishes. Yet there is a nontrivial representation SU(n) acting on

Pn�1
and F(Pn�1

) ⇠= Vect�n
.

Where’s the error? Well, we actually have to collapse the cohomological grading

from Z to Z/2. Here is the scheme to fix this: let � be an indeterminate of degree

2. Then consider H2
(BG;C((�))⇥), which is our stand-in for Heven

(BG;C⇥
). This

has the form of a Brauer group H2
(�;O⇥

), where here we are using O = H⇤C((�))
but there is also a story for O = Ktop

.

At any rate, C((�))⇥ = GL1(C((�))) so we can identify H0
(BG;C((�))⇥) as maps

g/G = t/W ! C⇥.

If we transgress over S2
, we get a class in H0

(⌦
2BG/AdG;C((�))⇥). Assuming that

G = T a torus for the moment, this group is H0
(BT ⇥ ⇡1;C((�))⇥) of maps linear

in ⇡1, which in tern allows us to identify it as H0
(BT ;H0

(⇡1;C((�))⇥)), where this

coe�cient system is our dual torus T_
C with the grading collapsed. So ultimately,

we have a map t ! T_
C again which is the exponentiated di↵erential of a function,

giving rise to a Lagrangian L ⇢ tC ⇥ T_
C = T ⇤T_

C the cotangent bundle over the dual

torus, which is degree 1 and finite over tC. This gives us a geometric way to think

about a particular “Brauer class”.

Well, what if G is nonabelian? We can guess that the Lagrangian should now live

in (T ⇤T_
C )/W . This has a symplectic resolution, which we can think about in one of

the following 5 ways:

Theorem 2 (Bezrukavnikov, Mirković, Finkelberg). The symplectic resolution of

the above, which we call C3(G), has the following properties:
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(1) Its functions are Weyl-invariants in C[T ⇤T_
C ][e

↵_�1/↵], where ↵ are the roots

(2) It is isomorphic to T ⇤
regG

_
C//AdG_

C
(3) It is also isomorphic to N�\\T ⇤G_

C //��N , where � is a regular nilpotent

character

(4) It is also isomorphic to SpecHG
⇤ (⌦G), equipped with a Pontryagin product.

(5) It is algebraic symplectic with a symplectic form of degree 2, which provides

an E3-structure on its functions.

Theorem 3. Let C be a “nice” (e.g. satisfying all the assumptions made above)

super-dg category with a topological G-action.

• HH⇤
G(C) is an E2-algebra and an algebra over C3(G) compatible with the

E3-structure.

• There is a sheaf of categories over SpecHH⇤
G(C) with E3-action compatible

with that of C3(G).

• SpecHH⇤
G(C) has Lagrangian support which is finite over the base tC.

Example 4. If C is nice with a trivial G-action, then for  : t ! HHeven
(C), the

element e 2 Heven
(BT ; GL1(HHeven

)) gives an interesting action on C. Moreover, a

nontrivial flat structure on HH⇤
(C) gives a deformation of the trivial G-action. As a

special case, if C ⇠=
L

Vect is semisimple, then such a deformation gives a curving

for
L

Vect over t.

Model representations analogous to finite dimension representations of G:

(1) The invariant category computation, CG
: C ⌦ Coh(t) with deformation class

 . As a subexample, if C = Vect, then the invariant category is MF (t; )
the matrix factorisation category.

(2) The “space of states” HH⇤
(CG

). G acts on C, which means that every g 2 G
has a corresponding element HH⇤

(g·; C) on which the stabilizer of g acts. Be-

cause the action is topological, this gives rise to a derived local system over G,

equivariant under the action of conjugation, hence HH⇤
(CG

) = HG
⇤ (G;HH⇤

)

with a Pontryagin product, where HH⇤
is the local system above.

(3) Quantum GTT Conjecture. IfX is Fano, and G acts freely onXsemistable
, then

HH⇤
(CG

) = QH⇤
G(X//G) (where C is the Fukaya category of X). The proof

that they are the same multiplicatively goes back to Wehrheim-Woodward,

coming from the quantum Kirwan map. That they are the same additively

comes from a Witten deformation of Floer homotopy. These proofs seem to

be totally separate.
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(4) Batyrev presentation of QH⇤
(CN/!/torus) in the Fano case. We have

QH⇤
(CN//torus) = QH⇤

T (CN
)/(Seidel monodromies = 1) = H⇤

(T ;H⇤
(BT ))

where this last coe�cient system needs to be twisted.

(5) Mirrors of flag varieties. We have from a theorem above that

T ⇤
regG

_
C//AdG

_
C
⇠= N�\\T ⇤G_

C //��N

The lefthand side is foliated by G-equivariant mirrors of flag varieties, giv-

ing a vertical Lagrangian foliation on the righthand side, which recovers T -
equivariant Rietsch mirrors. There is also follow-up work on generalized flags.

(6) Coloumb branches for nonzero representations.. Nakajima and Brauerman-

Nakajima-Finkelberg defined a version of C3(G;V ) for V a G-representation.

Fact: we can actually derive their definition from just C3(G; 0) and a rational

Lagrangian section, or equivalently a mirror of V as a symplectic G-fold.


