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AFFINE BEILINSON-BERNSTEIN AT THE CRITICAL LEVEL
FOR GL2

SAM RASKIN

The Outline:

(1) Beilinson-Bernstein
(2) A�ne Beilinson-Bernstein
(3) The Proof for GL2

(4) Relation to geometric Langlands

So we will explain the title word-by-word. Throughout, everything seen should be
considered derived and over a field k of characteristic zero.

I. BB This was the last step in proving the following conjecture of Kazhdan-
Lusztig:

tsome combinatoricsu
K-L K-L after Deligne, Grothendieck

trepresentation theoryu oo BB-localization
// tgeometry of the flag varietyu

where dashed means conjectural. Concretely, let G be a reductive group (e.g. GLn)
and B Ä G a Borel subgroup (e.g. upper triangular matrices), and g the Lie algebra
of G.

Theorem 1 (BB-localization). Global sections gives an isomorphism between the
category ofD modules on the (smooth and projective) flag variety G{B and represen-
tations of g with the same central character as the trivial g-representation. Denote
all this � : DpG{Bq Ñ g-mod0.

Heuristic of the theorem: for a g-module M in g-mod0, we have M “
≥
b1PG{B M

b1
.

So M may not have invariants with respect to B, but for the other Borel subgroups.

Notes by Ian Coley.
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There was an early desire for an a�ne version of BB, and early results were a bit
unsatisfactory.

finite dimensional setup a�ne setup
G GpKq, K “ kpptqq the algebraic loop group
B GpOq, O “ krrtss

G{B GrG “ GpKq{GpOq
g LiepGpKqq “ gpptqq :“ g bk kpptqq

Problem: if g is semisimple, then ZpUpgpptqqq “ k, suitably interpreted, so the
central character restriction doesn’t make sense.

Correction: let  : g b g Ñ k be an ad-invariant symmetric bilinear form. Then
we obtain an extension

0 Ñ k Ñ pg Ñ gpptqq Ñ 0

which is split as vector spaces, with the bracket defined by the 2-cocycle
gpptqq b gpptqq Ñ k, p⇠,'q fiÑ Respp⇠, d'qq.

The center of these new algebras was described by Feigin-Frenkel. Call crit the
special  given by ´1{2 ¨ Killing form.

Theorem 2 (F-F). (1) If g is simple and  ‰ crit, then ZpUppgqq “ k.
(2) If  “ crit, there exists a canonical isomorphism SpfpZpUppgcritqqq Ñ Op qG,

where the righthand side is “opers” on the formal punctured disc
D

˝ “ Spec kpptqq.

These opers were defined by Drinfeld and Sokolov in the 80’s and are qG-bundles
with connection on D

˝ with extra structure.

Example 3. qG “ SL2, Op qG is (up to choices) the space of connections of the form
"
d `

ˆ
0 f

1 0

˙
dt : f P kpptqq

*

Remark 4. For general qG, Op qG is noncanonically isomorphic to SpecpZpUpqgqqqpKq
the loop group on that spectrum. This can be well enough understood and is a
“ind-pro-a�ne space”.

Now we have � : DcritpGrGq Ñ pgcrit-mod. The central characters are “bounded” by
the central character of the vacuum representation Vcrit :“ �pGrG, �1q “ indpgcrit

k‘grrtsspkq.
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Being nonderived for a moment, we have ZpUppgcritqq – FunOp qG, and if we consider
the surjection of the lefthand side onto H

0 EndpVcritq, we obtain a category of regular
opers, i.e. opers on the non-punctured disc. So we improve � to

� : DcritpGrGq Ñ pgcrit-modreg

factoring through the quotient. But this can’t yet be an equivalence because Vcrit

has a large set of endomorphisms, but pGrG, �1q doesn’t have so many. So how do
we account for this?

Theorem 5 (Beilinson-Drinfeld). � : DcritpGrGq Ñ pgcrit-modreg is a morphism of

Rep qG-module categories, where the structure comes from

‚ Rep qG Ñ DcritpGrGqGpOq by geometric (monoidal) Satake, and this acts on
DcritpGrGq.

‚ Rep qG Ñ QCohpOpreg
qG

q which acts on pgcrit-modules by pullback along

Opreg
qG

Ñ B qG.

Conjecture 6 (Frenkel-Gaitsgory). If we enhance � to incorporate this action, then
we have an equivalence

�enh : DcritpGrGq bReg qG
QCohpOpreg

qG
q „Ñ pgcrit-modreg

Theorem 7 (Raskin). The above conjecture holds for G “ GL2.

Outline of the proof: uses the theory of loop group actions on (dg) categories. All
‘categories’ henceforth are dg categories. The following things are true for all groups
G:

�enh is a morphism of categories with GpKq-action. We know:

(1) F-G showed that �enh is always fully-faithful, and induces an equivalence
on I

˝-equivariant objects, where I
˝ “ GpOq ˆG N , which sits inside of

I “ GpOq ˆG B, which all sits inside GpOq. To prove F-G we need only
to show essential surjectivity.

(2) A folklore result polished up by R: �enh is a equivalence on Whittaker cate-
gories. If C is a category with GpKq action, we get a category

WhitpCq :“ C
NpKq, » CNpKq, 

where  : NpKq Ñ Ga is a “suitably nondegenerate character”. The equiva-
lence between invariants and coinvariants was proved by Raskin.

Theorem 8 (R.). TheWhittaker categoryWhitppg-modregq is equivalent toW-mod.
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F-F observed that ZpUppgcritqq is equivalent to Wcrit, so we don’t actually need to
give a definition of what that thing is in the case that we care about. All in all, work
of Frenkel-Gaitsgory-Vilonen and Mirković-Vilonen showed that

WhitpGrGq „Ñ Rep qG

is an equivalence, which implies that

WhitpDcritpGrGq bReg qG
QCohpOpreg

qG
qq “ QCohpOpreg

qg q

On the other hand,
Whitppgcrit-modq “ QCohpOp qGq

so restricting to reg on both sides gives us again QCohpOpreg
qg q. This implies that (in

the conjecture) �enh induces an equivalent on Whittaker categories (well, technically
we’ve only shown they are abstractly equivalent but more work does show this).

How do we turn this into the result?

Theorem 9 (R.). Let G “ PGL2. If C is a (dg) category with a GpKq-action, define
C0 Ä C to be the minimal dg-subcategory such that

‚ C0 is closed under colimits
‚ C0 is closed under the GpKq-action
‚ WhitpCq Ä C0

‚ C
I˝ Ä C0 (recall the definition of I˝ above)

Then C0 “ C.

Remark 10. Some remarks:

‚ The F-G Conjecture is a corollary by taking for C0 the essential image of �enh.
‚ This is parallel to a classical result: if PGL2pQpq acts on V , an irreducible
smooth representation, then V is 1-dimensional or VNpQpq, ‰ 0.

‚ Good heuristics exist in geometric Langlands saying: the failure of WhitpCq to
generate C under theGpKq-action is encoded (pretty precisely) in singularities
of maps

LS qP pD˝q Ñ LS qGpD˝q
where P goes over the parabolic subgroups of G. For G “ PGL2, P “ B. Sin-
gularities in the above map come from H

1
dRpD˝; pqg{qbqP qB

q, where
P qB “ p0 Ñ � Ñ p⇠,rq Ñ �

_ Ñ 0q P LS qBpD˝q, and these groups are
zero unless �b2 “ id
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‚ Finally, F-G predict that for � P LS qGpD˝q, there exists some category C� on
which GpKq acts. Moreover, if we choose a � P Op qG mapping to �, then
C� “ pgcrit-mod�. In particular, the FG Conjecture is the case � “ trivial.


