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AFFINE BEILINSON-BERNSTEIN AT THE CRITICAL LEVEL
FOR GL,

SAM RASKIN

The Outline:

(1) Beilinson-Bernstein

(2) Affine Beilinson-Bernstein

(3) The Proof for GLy

(4) Relation to geometric Langlands

So we will explain the title word-by-word. Throughout, everything seen should be
considered derived and over a field k of characteristic zero.

I. BB This was the last step in proving the following conjecture of Kazhdan-
Lusztig:

{some combinatorics}

KL_~-~" W}lendieck

{representation theory} BBocalization {geometry of the flag variety}

where dashed means conjectural. Concretely, let G be a reductive group (e.g. GL,)
and B < G a Borel subgroup (e.g. upper triangular matrices), and g the Lie algebra
of G.

Theorem 1 (BB-localization). Global sections gives an isomorphism between the
category of D modules on the (smooth and projective) flag variety G/B and represen-

tations of g with the same central character as the trivial g-representation. Denote
all this I': D(G/B) — g-modo.

Heuristic of the theorem: for a g-module M in g-mody, we have M = Sb,eG/B MY,

So M may not have invariants with respect to B, but for the other Borel subgroups.

Notes by Ian Coley.
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There was an early desire for an affine version of BB, and early results were a bit
unsatisfactory.

finite dimensional setup ‘ affine setup

G G(K), K = k((t)) the algebraic loop group
B G(0), O = K[[t]]
G/B Grg = (K /G(O)

g Lie(G(K)) = g((t)) := g ® k(1))

((t)
Problem: if g is semisimple, then Z(U(g((t))) = k, suitably interpreted, so the
central character restriction doesn’t make sense.

Correction: let k: g ® g — k be an ad-invariant symmetric bilinear form. Then
we obtain an extension

0—k—g.—g((t) -0

which is split as vector spaces, with the bracket defined by the 2-cocycle
a(()) ®g((t)) = k, (& ») — Res(k(E, dy)).

The center of these new algebras was described by Feigin-Frenkel. Call crit the
special k given by —1/2 - Killing form.

Theorem 2 (F-F). (1) If g is simple and x # crit, then Z(U(g.)) = k.
(2) If kK = crit, there exists a canonical isomorphism Spf(Z(U(geit))) — Opg,
where the righthand side is “opers” on the formal punctured disc
D° = Speck((t)).

These opers were defined by Drinfeld and Sokolov in the 80’s and are G-bundles
with connection on D° with extra structure.

Example 3. G = SLs, Opg is (up to choices) the space of connections of the form

{d+ G’ g) dt: fe k;((t))}

Remark 4. For general G, Opg is noncanonically isomorphic to Spec(Z(U(g)))(K)
the loop group on that spectrum. This can be well enough understood and is a
“ind-pro-affine space”.

Now we have I': Dt (Grg) — @ene-mod. The central characters are “bounded” by

the central character of the vacuum representation Vi := I'(Grg, §1) = 1nd£‘(j§;[[ 1l (k).



AFFINE BEILINSON-BERNSTEIN AT THE CRITICAL LEVEL FOR GL2 3

Being nonderived for a moment, we have Z(U(gerit)) = Fun Opgs, and if we consider
the surjection of the lefthand side onto H® End(V.;), we obtain a category of reqular
opers, i.e. opers on the non-punctured disc. So we improve I' to

I': Dcrit(GrG) - ﬁcrit‘mOdreg

factoring through the quotient. But this can’t yet be an equivalence because V.
has a large set of endomorphisms, but (Grg,d;) doesn’t have so many. So how do
we account for this?

Theorem 5 (Beilinson-Drinfeld). I': Deit(Grg) — Beit-modyeg is a morphism of
Rep G-module categories, where the structure comes from

o Repé — Deit(Grg)%(©) by geometric (monoidal) Satake, and this acts on
Dcrit(vGrG)'

e RepG — QCoh(OprGfg) which acts on gei-modules by pullback along
Opereg — BG.

Conjecture 6 (Frenkel-Gaitsgory). If we enhance I to incorporate this action, then
we have an equivalence

Fenh: Dcrit(GrG) ®Regé QCOh(Opgg) = ,g\crit'mOdreg
Theorem 7 (Raskin). The above conjecture holds for G = GLs.

Outline of the proof: uses the theory of loop group actions on (dg) categories. All
‘categories’ henceforth are dg categories. The following things are true for all groups

G:
It is a morphism of categories with G(K)-action. We know:

(1) F-G showed that I'*™® is always fully-faithful, and induces an equivalence
on [°-equivariant objects, where I° = G(O) xg N, which sits inside of
I = G(O) x¢ B, which all sits inside G(O). To prove F-G we need only
to show essential surjectivity.

(2) A folklore result polished up by R: '™ is a equivalence on Whittaker cate-
gories. If C is a category with G(K) action, we get a category

Whit(C) := CN ~ Crgey

where ¢: N(K) — G, is a “suitably nondegenerate character”. The equiva-
lence between invariants and coinvariants was proved by Raskin.

Theorem 8 (R.). The Whittaker category Whit(g,-mod,eg) is equivalent to W,-mod.
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F-F observed that Z(U(geit)) is equivalent to Weit, so we don’t actually need to
give a definition of what that thing is in the case that we care about. All in all, work
of Frenkel-Gaitsgory-Vilonen and Mirkovi¢-Vilonen showed that

Whit(Grg) — Repg
is an equivalence, which implies that

Whit (Dt (Grg) ®Regs QCoh(OprGf’g)) = QCoh(Opgeg)
On the other hand,
Whit (§eri-mod) = QCoh(Opy)
so restricting to reg on both sides gives us again QCoh(Op;*). This implies that (in
the conjecture) I'™® induces an equivalent on Whittaker categories (well, technically
we've only shown they are abstractly equivalent but more work does show this).

How do we turn this into the result?

Theorem 9 (R.). Let G = PGL,. If C is a (dg) category with a G(K)-action, define
Co < C to be the minimal dg-subcategory such that

e Cp is closed under colimits

e Cy is closed under the G(K)-action

e Whit(C) < Cy

o CI" = Cy (recall the definition of I° above)

Then Cy = C.

Remark 10. Some remarks:

e The F-G Conjecture is a corollary by taking for Cy the essential image of """

e This is parallel to a classical result: if PGL2(Q,) acts on V, an irreducible
smooth representation, then V' is 1-dimensional or Vy(q,).y # 0.

e Good heuristics exist in geometric Langlands saying: the failure of Whit(C) to
generate C under the G(K)-action is encoded (pretty precisely) in singularities
of maps

LS;5(D°) — LS5(D°)
where P goes over the parabolic subgroups of G. For G = PGL,, P = B. Sin-
gularitics in the above map come from HL, (D% (§/b) p,), where
Py = (0 - 0 - (£,V) - 0¥ — 0) € LS5(D°), and these groups are
zero unless 0®? = id
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e Finally, F-G predict that for 0 € LS5(D°), there exists some category C, on
which G(K) acts. Moreover, if we choose a x € Opy mapping to o, then
Co = Gerit-mod,. In particular, the FG Conjecture is the case y = trivial.



