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p-ADIC ALGEBRAIC K-THEORY AND TOPOLOGICAL CYCLIC
HOMOLOGY

AKHIL MATHEW

Joint with Clausen, based on work of Clausen-Mathew-Morrow and Clausen-
Mathew-Naumann-Noel.

I. Motivation for K-theory

Let R be a commutative ring. One can associate a family of groups KipRq such
that K0pRq is the Grothendieck group of finitely generated projective R-modules,
and the higher K-groups come as homotopy groups of some space KpRq

K0pRq is a literal group completion of isomorphism classes of finitely generated
projective R-modules, so one way to see the space KpRq is as a homotopy-theoretic
group completion of the category of finitely generated projective R-modules.

Definition 1. (Definition/Construction) Given a stable 8-category C (e.g. a dg
category), there’s a general construction of a spectrum KpCq. In particular, ⇡0KpCq
is the free abelian group on x P C modulo cofibre sequences: if x1 Ñ x Ñ x

2 is
a cofibre sequence, this rxs “ rx1s ` rx2s. This has a precise universal property
[Blumberg-Gepner-Tabuada].

So given a quasicompact quasiseparated scheme X, define KpXq :“ KpPerfpXqq.
If X “ SpecR, it’s the same thing.

Theorem 2 (Thomason-Trobaugh). X fiÑ XpKq is a sheaf for the Nisnevich topol-
ogy.

It’s di�cult to compute in general, so most computations are done obliquely rather
than from the definition. New computations come usually from new (discovered)
properties. So: think of X fiÑ KpXq like a cohomology theory on schemes, which
can be made more explicit via étale, prismatic, crystalline, etc.

Notes by Ian Coley.
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But: algebraic K-theory depends only on PerfpXq, as opposed to the other coho-
mology theories – it’s a noncommutative invariant.

Example 3. If f : Y Ñ X is smooth and proper, Rf˚ : PerfpY q Ñ PerfpXq induces
f˚ : KpY q Ñ KpXq. In general, this doesn’t come as freely (if at all).

Example 4 (Thomason). Grothendieck’s absolute purity conjecture: a Gysin se-
quence in `-adic cohomology. The analogue in K-theory is dévissage.

Example 5 (Voevodsky). If X{C is a variety, for each Zariski open U Ä X, consider
H

˚pU,Z{`q. Then colimU H
˚pU,Z{`q is generated in degree 1. This is a special case

of Bloch-Kato for CpXq.

Focus: algebraic K-theory with torsion coe�cients or profinitely completed K
^.

The di�culty is that this is not a sheaf for the étale topology, so you can’t use Galois
theory to compute Kpkq from its separate extensions.

The principle is that there is an approximation to K-theory that does satisfy étale
descent and is easier to compute. We could just étale sheafify, but that loses some
lovely features, like only depending on PerfpXq.

II. `-adic K-theory

Theorem 6 (Suslin-Gabber). If k is a separately closed field of characteristic ‰ `,
then Kpkq^

` – ku
^
` , noncanonically, and ⇡2iKpkq^

` – Z`piq. The same holds for rings
R which are strictly henselian with residue field k.

New principle: A1-homotopy invariance for smooth algebras.

From now on, everything is `-adically complete, ` ° 2.

Construction 7 (Miller-Mahowald). There is a functor LKp1q : Sp Ñ Sp. Explicitly,
if X P Sp, then LKp1qpXq{` “ X{`rv´1

1 s where v1 : ⌃2`´2pS0{`q Ñ S
0{` is something

purely stable homotopy theoretic.

Theorem 8 (Thomason). Let X be a scheme over Zr1{`s plus some finiteness.
Then LKp1qKp´q satisfies étale descent. Moreover, there is a spectral sequence
H

s
étpX,Z`ptqq ùñ ⇡2t´sLKp1qKpXq.

Example 9. If X{C is a variety, LKp1qKpXq “ KU
^
` pXpCqq.

By our principle, the last thing to ask is: is this a good approximation? Yes!
Consider the map ‹ : Kpxq^

` Ñ LKp1qKpXq
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Theorem 10 (Rosenschon-Østvaer, after Voevodsky-Rost). Suppose X has finite
Krull dimension and for all x P X, vcd`pkpxqq § d. Then ‹ is an isomorphism on ⇡˚
with ˚ • maxpd ´ 2, 0q.

III. p-adic K-theory

Suslin-Gabber no longer applies – K-theory is not locally constant!

Example 11. New examples:

‚ KpFpq^
p » HZp, proven by Quillen, concentrated on degree zero.

‚ KpOCpq^
p » ku

^
p , proven by Niziol, so somehow this is the same as the `-adic

case.

One complication is that we are no longer insensitive to nil-ideals. Our new friend
is topological cyclic homology TC.

Construction 12 (Bökstedt-Hsiang-Madsen ’93). Given a stable 8-category C, one
constructs a spectrum and a map KpCq Ñ TCpCq. The definition of TC is more
complicated, but the computations are easier. It’s derived from THH, which is
derived from regular HH.

Theorem 13 (Dundas-Goodwillie-McCarthy). If pR, Iq is a ring with a nilpotent
ideal, then there exists a homotopy cartesian square

KpRq //

✏✏

KpR{Iq

✏✏

TCpRq // TCpR{Iq
Thus relative K-theory agrees with relative TC. This is also explored by Hesselholt-
Madsen (etc) to do many computations.

Does this fit our principle? Let R be a p-complete ring. p-adically, KpRq^
p Ñ

TCpRq^
p is a good approximation.

Theorem 14 (Geissar-Hesselholt, CMM). If R is p-complete, TCpRq^
p is étale p-

adic K-theory in degrees • 0. Also, K^
p Ñ TC

^
p is an equivalence in large enough

degrees (on rings that aren’t too large).

IV. Gluing things together
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Definition 15 (Clausen). For C a stable 8-category, then define the Selmer K-theory
K

SelpCq :“ L1KpCq ˆL1TCpCq TCpCq, where L1 is like LKp1q.

Example 16. This glues up II and III nicely.

‚ K
SelpCqQ » KpCqQ

‚ K
SelpCq^

` » LKp1qKpCq if ` is invertible on C

‚ K
SelpRq^

p » TCpRq^
p if R is p-complete

So it looks great, but does it fit our principle? There exists a map K Ñ K
Sel in

general, but is it any good? Further, KSel is purely categorical, but is it an étale
sheaf?

Theorem 17 (CM,CMNN). The construction X fiÑ K
SelpXq is an étale sheaf on

spectral schemes.

Theorem 18 (CM). K ét Ñ K
Sel is an equivalence in degrees • ´1.

So: étale K-theory is (up to negative business) a noncommutative invariant.

Definition 19. Let k be a field, p a prime. Let dk be vcdppkq if the characteristic
of k is not p, and let dk be 1 ` logprk : kps otherwise.
Theorem 20 (CM). If X is a quasicompact quasiseparated spectral scheme of finite
Krull dimension and d “ supxPX dkpxq, then KpXq^

p Ñ K
SelpXq^

p is an isomorphism
in degrees • maxpd ´ 2, 0q.

Ingredients: a technical issue called ‘hypercompleteness’ on étale sheaves of spec-
tra; enhancement of Dundas-Goodwillie-McCarthy to spectral stu↵.


