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PRISMATIC COHOMOLOGY AND APPLICATIONS

BHARGAV BHATT

The goal of this walk, unlike previous talks, is to be get to applications and perhaps
miss a bit of detail on the way. Fix p a prime, as everything is p-local.

Theorem 1 (Bhatt-Morrow-Scholze). Let C/Qp be a complete and algebraically
closed field, and let OC be the valuation ring. Let X/OC be a proper, smooth
(formal) scheme. Then dimH

i
ét(XC ;Fp)  dimH

i
dR(Xk), where Xk denotes the

special fibre.

In the process of proving this, they made a new cohomology theory that specialised
down to both sides, specifically a deformation of de Rham cohomology. How can we
broaden the context in which such a thing is possible?

Goal: present this context site-theoretically, giving a uniform framework for finding
deformations of our favourite cohomology theories.

I. Prisms

Definition 2. A prism is a pair (A, I) that:

(1) A is a commutative ring with a (derived) lift of Frobenius �, along with higher
homotopical data telling us why � lifts Frobenius.

(2) I ⇢ A is an ideal defining a Cartier divisor, and A is p-adically and I-adically
complete.

(3) p 2 (I,�(I)). That is, any local generator d of I satisfies �(d) = d
p + p · u for

some unit u 2 A
⇥.

The idea is that we are working in mixed characteristic, and � doesn’t change I

in characteristic p but it does everywhere else.

Example 3. (1) Crystalline prisms. Let A be any p-complete, p-torsion free �-
ring. Let I = pA and ensure �(p) = p. Note that p = p

p + p(1 � p
p�1),

and 1 � p
p�1

2 A is a unit since A is p-complete, so we satisfy (3) above.

Notes by Ian Coley.
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2 BHARGAV BHATT

Specifically, we could let A = Zp and � = id. Note: We never had an actual
definition for �-ring in this talk, but in this case it stands for “I is a Cartier
divisor”.

(2) Breuil-Kisin prisms. A = Zp[[u]], �(u) = u
p, and I = (u� p)A.

(3) q-dR (quantum de Rham) prisms. A = Zp[[q � 1]], �(q) = q
p. This is the

same ring as above, but has a di↵erent structure as a �-ring. I = [p]qA, where
[n]q =

qn�1
q�1 for any n 2 N.

In each of the above examples, the de Rham cohomology of A/I was known to be
liftable to A.

(4) Perfect prisms. Call (A, I) perfect if � : A
⇠=
! A. Observe: any prism has

a perfection given by colim(A
�
! A

�
! · · · ), which may need to be (p, I)-

adically completed afterwards. Thus we might as well think of all our prisms
as pefect.

Proposition 4. The map (A, I) 7! A/I gives an equivalence

{perfect prisms}
⇠
! {perfectoid rings}

II. Prismatic cohomology

Fix a prism (A, I) and X a p-adic (formal) scheme over A/I.

Definition 5. The prismatic site of X denoted (X/A)� has objects prisms (B, J)
with (A, I) ! (B, J) a map of prisms (so a map of commutative rings compatible
with � and sending I to J) anlong with a map Spf(B/J) ! X. Take for the topology
the étale topology on Spf(B) with respect to the p-adic completion (not the J-adic
one).

If X is a�ne, the topology won’t turn out to matter, so might as well use the
indiscrete one.

We have two natural presheaves O� and O� which send (B, J) to B or B/J

respectively. In the topologies allowed above, these are both sheaves.

Lemma 6 (Rigidity Lemma). If (A, I) ! (B, J) is a map of prisms, then I⌦AB
⇠= J .

As a corollary, O�
⇠= O� ⌦

L
A A/I. Further note that O� is a sheaf of O(X)-

algebras.
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Theorem 7 (Hodge-Tate comparison). Assume X = Spf(R) is a�ne and smooth.
Let �R/A = R�((X/A)�;O�), where we note that � acts on the site (X/A)�, giving
an action on the global sections also. Let

�R/A = �R/A ⌦
L
A A/I ⇠= R�((X/A)�;O�)

upon which � also acts. Then there is a canonical isomorphism

H
n(�R/A)

⇠=
! ⌦n

R/A{n}, where {n} denotes ⌦A/II
n
/I

n+1. In particular, �R/A is
a perfect complex.

Corollary 8 (de Rham and crystalline comparison). If I = pA, there exists a canon-
ical isomorphism (up to Frobenius twist)

�
⇤
A�R/A

⇠=
! R�crys(R/A)

In general, there exists an isomorphism

(�⇤
A�R/A)⌦

L
A A/I

⇠=
! ⌦⇤

R/(A/I)

Lemma 9 (Key Lemma). If A is a p-torsionfree p-adically complete ring with a lift
of Frobenius (aka �-ring), and x 2 A such that �(x) 2 pA if and only if xp

2 pA,
then xn

n! 2 A for all n 2 N, i.e. all divided powers of x are in A.

Now what if X is singular? Derive everything, because the site gets nasty.

III. Derived prismatic cohomology

Fix a prism (A, I), and assume all A-modules are (p, I)-complete.

Definition 10. Consider the subcategory

{formally smooth A/I-algebras} ⇢ {p-complete simplicial commutative A/I-algebras}

Then from the smaller category we had a functor ��/A to Dcomplete(A). We de-
note still by ��/A the left Kan extension of that functor along the inclusion of the
subcategory, thus giving us

��/A : {p-complete simplicial commutative A/I-algebras} ! Dcomp(A)

This is how we define the complex for singular schemes. Concretely, if R is any A/I-
algebra, then simplicially resolve it by smooth ones P• ! R and take the colimit
�P•/A = Tot(�P•/A) =: �R/A

Theorem 11 (Derived Hodge-Tate comparison). For all p-complete A/I-algebras R,
there exists a functorial increasing exhaustive filtration (“conjugate filtration”) on
�R/A (analogously defined) such that the associated graded is gri ⇠= ⇤i

LR/(A/I)[�i]{�i},
where LR/(A/I) is the cotangent complex and the shift and twist is as before.
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Example 12. Say R = (A/I)/(f), f a nonzerodivisor on A/I. Then the HT com-
parison theorem plus work implies that �R/A is concentrated in degree zero, so it’s
just a ring! In fact, if we write I = dA, it is concretely

�R/A = A

(
ef
d

)^

as a �-ring so that the lift of Frobenius survives the adjoining of these new elements
(and ef is a lift of f).

Remark 13. For f = p
n, this is useful in computing algebraic K-theory via THH.

IV. Perfection in mixed characteristic

Fix a perfect prism (A, I). Observe the following: if R is a smooth Fp-algebra,
then

Rperf : = colim(R
�
! R

�
! · · · )

= colim(⌦⇤
R/Fp

�
! ⌦⇤

R/Fp

�
! · · · )

=
h
colimR�crys(R/Zp)

�
! R�crys(R/Zp)

�
! · · · )

i
/p

That last construction is still doable in mixed characteristic.

Definition 14. For any A/I-algebra R, let Rpfd =
h
colim(�R/A

�
! · · · )

i^
/I.

A priori this is a derived object in D(R) i.e. an E1-ring if you are so inclined.

Remark 15. If I = pA, Rpfd = Rperf is a ring, but this fails in general. However,
Rpfd 2 D(R)�0 is connective (a nontrivial statement).

Example 16. Where Rpfd is concentrated in degree zero:

(1) If A/I ! R is surjective, Rpfd is a quotient of R.
(2) If A/I ! R is finite (or integral), then Rpfd is in degree zero.

Remark 17. One final useful isomorphism: if I = dA,

�R/A


1

d

�
/p

n

��=1 ⇠=
! R�’et

✓
R


1

p

�
,Z/pn

◆


