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THE CHERN CHARACTER AND CATEGORIFICATION

SARAH SCHEROTZKE

Joint with M. Hoyois, N. Sibilla, and P. Safronov. HSS = Hoyois-Sibilla-Scherotzke,
HSSS = everyone.

Agenda:

(1) Classical Chern character
(2) Categorified Chern character
(3) Grothendieck-Riemann-Roch and applications

Example 1. Instances of the classical Chern character:

(1) Algebraic topology: M a compact manifold, then

ch: tC-vector bundles on Mu Ñ H
˚
dRpMq

(2) Representation theory: G a finite group,

ch: tf.d. reps over a field ku Ñ HH˚pkrGsq
which sends V to the class function g P G fiÑ trpV ¨gÑ V q.

(3) Algebraic geometry, X a scheme or a stack.

ch : PerfpXq Ñ HH˚pXq
Note that 3 ùñ 2 for the case X “ r‚{Gs the quotient stack.

What’s in common? The lefthand sides are stable (= triangulated or abelian)
symmetric monoidal categories C. The righthand sides are Hochschild homology
ring of that category. So in general, ch : Ob C Ñ HH˚pCq satisfying:

(P1) ch is additive, i.e. it splits short exact sequences or triangles. Specifically,

p0 Ñ M Ñ N Ñ L Ñ 0q ùñ chpNq “ chpLq ` chpMq
This means that ch factors through K0pCq.

(P2) ch is multiplicative, i.e. chpN b N
1q “ chpNq ¨ chpN 1q.

Notes by Ian Coley.
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2 SARAH SCHEROTZKE

(p3) ch admits an S
1-equivariant refinement, so factors through HC

´ negative
cyclic homology.

Historically, the first examples were given by [McCarthy, Keller, Ben-Zvi, Nadler]
using the functoriality of traces. The second examples by [Toën-Vezzosi] were given
using traces of monodromy.

Definition 2. Let M be a symmetric monoidal category, and 1M the monoidal
unit. An object L P M is dualizable if there exists L

_ P M with two maps
ev : 1M Ñ L b L

^ and coev : L_ b L Ñ 1M satisfying the triangle identities.

Definition 3. If L P M is dualizable, f P EndpLq, then define Trpfq P Endp1Mq by

Trpfq : 1M
ev
// L b L

_ fbid
// L b L

_ swap

–
// L

_ b L
coev

// 1M

From Toën-Vezzosi/DAG: letX be a (derived) stack, and consider LX :“ MappS1
, Xq

the derived loop space. Here, S1 is the pushout of Spec k – Spec k\Spec k Ñ Spec k
taken in the category of derived stacks. Then we can also form LX as the homotopy
pullback

LX “ X ˆXˆX X
p

//

p

✏✏

X

�
✏✏

X
�

// X ˆ X

If X “ SpecA is an a�ne (underived) scheme, then

LX “ SpecpA bL
AbLAop Aq “ SpecpHH˚pAqq

Theorem 4. HH˚pPerfpXqq “ HH˚pXq “ �OLX “ Endp1PerfpLXqq, where Keller
proved the first equality.

Construction of the Chern character: let E P PerfpXq, which are the dualizable
objects in QCohpXq. Then we can associate

E fiÑ pp˚
E,monodromy: p˚

E Ñ p
˚
E from the S

1 actionq fiÑ Trpmonodromyq
where we’ve obtained an endomorphism of the monoidal unit in PerfpLXq.

Categorification
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Classical Categorified
Domain: stable p8, 1q-category PerfpXq p8, 2q-category ShCatpXq of

small stable p8, 1)-categories
tensored over PerfpXq

Codomain: �OLX “ HH˚pXq p8, 1q-category PerfpLpXqq

Refinement: through KpXq (nonconnective) p8, 1q-category of noncommuta-
tive motives [Blumberg-Gepner-
Tabduada, Robalo]

This is in the realm of ‘categorification by delooping’. The righthand column are
things of the form M a symmetric monoidal category with unit 1M, and the corre-
sponding lefthand column is Endp1Mq. The case of noncommutative motives cate-
gorifying K-theory is a big theorem of BGT, and the other two are (sort of) defini-
tions.

Theorem 5 (HSS). There exists a functor of p8, 1q-categories
Ch: i1 ShCatpXqdualz Ñ PerfpLXq

where i1 means view that p8, 2q-category as an p8, 1q-category, satisfying analogous
properties:

(P1) There exists a unique refinement through the category NMotpXq of noncom-
mutative motives.

(P2) It’s a symmetric monoidal functor.
(P3) It factors through PerfpLXqhS1

, which categorifies negative cyclic homology.

Remark 6. Two remarks:

(1) Ch categorifies ch. We can view PerfpXq as an element in ShCatpXq, and
in fact it’s the monoidal unit. Therefore ChpPerfpXqq by P2 needs to be the
monoidal unit in PerfpLXq, which is OLX . There’s an induced map after
taking endomorphisms on both sides, giving

EndShCatpXqpPerfpXqq ChEndp´q
//

“
✏✏

EndPerfpLXqpOLXq
“
✏✏

PerfpXq
ch

// HH˚pXq

(2) We needn’t use PerfpXq for this, but just any stable symmetric monoidal
category (of dualizable objects).



4 SARAH SCHEROTZKE

Example 7. Let X “ Spec k. A model for ShCatpXq is pretriangulated k-linear dg
categories A. Then ChpAq “ HH˚pAq P PerfpLXq, and we can identify PerfpLXq
with complexes of finite dimensional k-vector spaces.

III. Groethendieck-Riemann-Roch

Classical: let f : X Ñ Y be a map of stacks. We get a symmetric monoidal pull-
back functor f˚ : PerfpY q Ñ PerfpXq, and a pushforward f˚ : PerfpXq Ñ QCohpY q
which not symmetric monoidal and thus fails in general to preserve dualizable ob-
jects. But since f

˚ is symmetric monoidal, it commutes with ch. Does f˚?

Theorem 8 (Grothendieck). If f˚ maps into PerfpY q, then the following diagram
commutes:

PerfpXq ch
//

f˚
✏✏

HH˚pXq
≥
f
✏✏

–
// H

˚
dRpXq

≥
f _TdX{Y
✏✏

PerfpY q
ch
// HH˚pY q –

// H
˚
dRpY q

The more classical formulation is the outside square.

Now: let f : X Ñ Y be a map of derived stacks. Then we have the symmetric
monoidal f˚ : ShCatpY q Ñ ShCatpXq and the not-symmetric-monoidal f˚ : ShCatpXq Ñ
ShCatpY q.
Theorem 9 (HSSS). Let f be a passable map. Then we have a commutative square:

ShCatpXqdualz Ch
//

f˚
✏✏

PerfpLXq
pLfq˚
✏✏

ShCatpY qdualz
Ch
// PerfpLY q

The proof is very di↵erent from the classical one and involves p8, 2q-category
theory.

Definition 10. f : X Ñ Y is passable if:

‚ The diagonal X Ñ X ˆY X is quasi-a�ne
‚ f

˚ : QCohpY q Ñ QCohpXq admits a right adjoint f˚ which itself admits a
right adjoint.

‚ f˚pQCohpXqq P QCohpY q-mod is a dualizable object.



THE CHERN CHARACTER AND CATEGORIFICATION 5

This is actually a mild condition, as all maps between schemes are passable.

Applications:

(1) There’s a new proof of the classical GRR theorem.
(2) McCarthy’s and Keller’s construction and Toën-Vezzosi’s constructions of the

classical Chern character we now know must coincide
(3) We can recognize the de Rham realization functor is an instance of a cate-

gorified Chern character, and thus is a noncommutative invariant (depending
only on PerfpXq as a PerfpY q-module)

IV. Higher Invariants

We can now iterate this construction, using the factorisation properties P1:

ShCatpXqdualz

&&

Ch
// PerfpLXq

&&

ch
// HH˚pLXq “ �OL2X

NMotpXq

88

&&

KpLXq

77

KpNMotpXqq

88

We can think of KpNMotpXqq as secondary K-theory, and the above composition as
the secondary Chern character. What does it mean? Not sure yet.


