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Outline

joint with Bertrand Töen

Study the geometry of the moduli of:
flat connections, or
local systems

on a smooth non-proper X{k, chark “ 0, with a view
towards

Constructing (shifted) Poisson structures, and
Describing their symplectic leaves.
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Motivation

X - compact oriented topological surface,
G - a complex reductive group.

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan,
Guruprasad-Huebschmann-Jeffrey-Weinstein, . . .

The moduli MG pX q of ρ : π1pX , xq Ñ G has an algebraic
Poisson structure;

The symplectic leaves in MG pX q are moduli spaces of ρ
with fixed monodromy at infinity.

Goal: Extend these statements to higher dimensional smooth
varieties X .

Tony Pantev University of Pennsylvania
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Main results (i)

Fix a field k of chark “ 0

Theorem: [P-Töen] Let X be a d -dimensional smooth com-
plex algebraic variety and let G be a reductive algebraic group
over k. Then

(1) The derived moduli stack LocG pX q of G -local systems on
X has a natural p2 ´ 2dq-shifted Poisson structure.

(2) This shifted Poisson structure admits generalized
symplectic leaves. Among those are the derived moduli
of G local systems with fixed monodromy at infinity.

Tony Pantev University of Pennsylvania
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Main results (ii)

Comments:

When d “ 1 the Poisson structure in (1) specializes to
Goldman’s Poisson structure on the moduli of
representations π1pX , xq Ñ G .

(2) is tricky: need to understand how to fix local
monodromies in the derived setting. Subtle issues:

can not be seen on t0LocG pX q and involves higher
homotopy coherences;
an additional constraint - strictness - has to be imposed
on the local monodromies at infinity.
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Main results (iii)

Theorem: [P-Töen] Let X be a d -dimensional smooth algebraic
variety over k . Then

(1) The derived moduli stack Vect∇pX q of flat vector bundles on
X has a natural p2 ´ 2dq-shifted Poisson structure.

(2) There is a well defined derived stack of flat bundles
Vect∇ppBX q on the formal boundary of X . The shifted
Poisson structure of (1) is realized as a Lagrangian structure
on the restriction map R : Vect∇pX q Ñ Vect∇ppBX q.

(3) The fiber of R over a flat vector bundle on pBX is a derived
algebraic space locally of finite presentation.

Tony Pantev University of Pennsylvania
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Main results (iv)

Comments:

The formal boundary pBX should encode the punctured
formal neighborhood of the boundary divisor in a good
compactification X Ă X.

Rigid analytic and non-commutative models for pBX have
been considered in [Ben-Bassat-Temkin], [Efimov],
[Hennion-Porta-Vezzosi]. Upshot: pBX has a well
defined sheaf theory and a well defined stack PerfppBX q of
perfect complexes.

Tony Pantev University of Pennsylvania
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Main results (v)
Comments:

The bulk of the work goes into constructing a derived
stack Perf∇ppBX q of perfect complexes equipped with flat
connections on pBX (studied in depth in [Raskin] for
X “ A1).

The stacks Vect∇pX q and Vect∇ppBpX qq are not algebraic
but are formally representable at field valued points. This
is crucial for defining symplectic, Lagrangian, and Poisson
structures.
The existence of the Lagrangian structure on
R : Vect∇pX q Ñ Vect∇ppBX q boils down to Poincaré
duality for compactly supported cohomology relative to
various derived base schemes.
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over k.

Main object of study: The moduli stack LocG pX q of

Tony Pantev University of Pennsylvania
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over k.

Main object of study: The moduli stack LocG pX q of

G -local systems on X

locally constant principal
G -bundles on X
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over k.

Main object of study: The moduli stack LocG pX q of

G -local systems on X
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Stacks of local systems

Moduli of local systems (ii)
Properties:

LocG pX q is a derived Artin stack over k.

t0LocG pX q depends only on the fundamental group of X .
It is the moduli stack of representations of π1pX , xq into
G , i.e.

t0LocGpX q “ MG pX q “ rRG pπ1pX , xqq{G s

Here RG pπ1pX , xqq is the character scheme of X : the
affine k-scheme representing the functor

RG pπ1pX , xqq : commalgk !! Sets,

A !! Homgrp pπ1pX , xq,G pAqq .

Tony Pantev University of Pennsylvania
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Stacks of local systems

Moduli of local systems (iii)
Properties:

The stack MG pX q “ t0LocGpX q has a course moduli
space which is the affine GIT quotient

MG pX q “ RG pX q{{G ,

and

MG pX qpkq “

ˆ
conjugacy classes of ρ : π1pX , xq Ñ G
with impρq-reductive

˙

“
´
iso classes of locally constant G pkq
bundles on X

¯

In general the derived structure on LocG pX q depends
on the full homotopy type of X .

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Shifted symplectic structures

Recall: [PTVV]

If F is derived Artin locally f.p. over k we have a
complex of closed 2-forms A2,clpF q on F .

When F “ RSpecA, then A2,clpF q corresponds to the
module tot

ś
pF ppAqrpsq.

An n-cocycle ω in the complex A2,clpF q is a closed
n-shifted 2-form.

ω is an n-shifted symplectic structure if the
contraction ω5 : TF rÑLF with the induced element in
HnpF ,^2Lq “ HnpA2,clpF qq is a quasi-iso.

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Relative structures
Let f : F Ñ F 1 be a morphism between derived Artin stacks
over k, then

An pn ´ 1q-shifted isotropic structure on f is a pair
pω, hq, where ω is an n-shifted symplectic structure on F 1,
and h is a homotopy between f ˚pωq and 0 inside the
complex A2,clpF q.

An isotropic structure pω, hq is Lagrangian if moreover
the canonical induced morphism h5 : Tf rÑLF rn ´ 1s is a
quasi-isomorphism.
Note: An pn ´ 1q-shifted Lagrangian structure on
f : F Ñ Spec k is simply an pn ´ 1q-shifted symplectic
structure on F .

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LocGpX q (i)

pX , BX q - compact oriented topological manifold of dim “ d

G - a reductive algebraic group over k.

Theorem:

(a) [PTVV] If BX “ ∅, then the derived stack LocG pX q has a
p2 ´ dq-shifted symplectic structure which is canonical up to
a choice of a non-degenerate element in pSym2 g_qG

(b) [Calaque] The restriction map LocG pX q ÝÑ LocG pBX q
carries a canonical p2 ´ dq-shifted Lagrangian structure for
the 3 ´ d “ 2 ´ pd ´ 1q-shifted symplectic structure on the
target.

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LocGpX q (ii)

Note: When X is a Riemann surface with boundary we
recover the symplectic structures on moduli of G -local systems
on X with prescribed monodromies at infinity (usually
constructed by quasi-Hamiltonian reduction).

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LocGpX q (ii)

Example: Suppose pX , BX q is an oriented surface with
boundary. Then

BX is a disjoint union of oriented circles, and so
LocG pBX q »

ś
rG{G s where rG{G s denotes the stack

quotient of the conjugation action of G on itself.

The stack LocG pS1q “ rG{G s carries a canonical
1-shifted symplectic structure.

For any λ P G , the inclusion of the conjugacy class
Oλ Ă G of λ gives a canonical Lagrangian structure on
the map BGλ » rOλ{G s ãÑ rG{G s.

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LocGpX q (iii)
Assigning elements λi P G to each boundary component of X ,
we get two 0-shifted Lagrangian morphisms

ś
BGλi

""!!
!!

LocG pX q.
##♠♠♠

♠♠ś
rG{G s

By [PTVV] the fiber product of these two maps has a
canonical 0-shifted symplectic structure. This fiber product, is
the derived stack

LocG pX , tλiuq

of G -local systems on X whose local monodromies at infinity
are belong to the conjugacy classes tOλi

u.
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Poisson structures

Shifted Poisson structures (i)
Recall: [CPTVV]

For F a derived Artin stack/k, can form the dg Lie
algebra of n-shifted polyvector fields
ΓpF , SymOpTF r´n ´ 1sqqrn ` 1s.

An n-shifted Poisson structure on F is a morphism in
the 8-category of graded dg-Lie algebras

p : kr´1sp2q ÝÑ ΓpF , SymOpTF r´n ´ 1sqqrn ` 1s,

where kr´1sp2q is the graded dg Lie algebra which is k
placed in homological degree 1 and grading degree 2,
equipped with the zero Lie bracket.

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (ii)
Remark: [Melani-Safronov,Costello-Rozenblyum,Nuiten]
Shifted Poisson structures can always be described in terms of
shifted symplectic groupoids (Weinstein program).

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (ii)

Theorem: [Costello-Rozenblyum] If F is a derived Artin
stack the space of n-shifted Poisson structure on F is weakly
equivalent to the space of equivalence classes of n-shifted
Lagrangian maps F Ñ F 1 to formal derived stacks F 1.

Note: rF Ñ F 1s „ rF Ñ F 2s if there exists an n-shifted
Lagrangian map F Ñ G and a commutative diagram F 1

F !!

$$
⑥⑥⑥⑥

%%❆
❆❆

❆ G

a
&&

b''
F 2

with a and b formally étale and compatible with the Lagrangian
structures.

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (iii)

Example: For a compact oriented d -dimensional manifold X
with boundary BX , the restriction map

LocGpX q ÝÑ LocG pBX q

is Lagrangian [Calaque] and so can be viewed as a

p2 ´ dq-shifted Poisson structure on LocG pX q.

Tony Pantev University of Pennsylvania
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Poisson structures

Simplectic leaves (i)

Classically a Poisson structure on a smooth variety induces a
foliation of the variety by symplectic leaves.
For an n-shifted Poisson structure on a derived stack F given
by a Lagrangian map f : F Ñ F 1, the symplectic leaves are the
appropriately interpreted fibers of f .

Definition: A generalized symplectic leaf of F is a derived
stack of the form F ˆF 1 Λ for any n-shifted Lagrangian mor-
phism Λ Ñ F 1

Note: By [PTVV] a generalized symplectic leaf carries a
canonical n-shifted symplectic structure.

Tony Pantev University of Pennsylvania
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Poisson structures

Simplectic leaves (ii)

Example: X - a compact oriented surface with boundary.
The restriction map

LocGpX q ÝÑ LocGpBX q “
ź

rG{G s

carries a 0-shifted Lagrangian structure and thus corresponds
to a 0-shifted Poisson structure on LocGpX q.

LocG pX , tλiuq - the derived moduli stack of G -local systems
on X with fixed monodromies at infinity - is a generalized
symplectic leaf in LocG pX q.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)
The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropTq.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)
The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropTq.

taken in the 8-category T of homotopy types
and over the opposite category of compact
subsets K Ă Y

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)
The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropTq.

Note: The pro-object BY is in general not constant and can
be extremely complicated. However if X “ Z pCq for a smooth
n-dimensional complex algebraic variety Z , we have:

Proposition: The pro-object BX is equivalent to a constant
pro-object in T which has the homotopy type of a compact
oriented topological manifold of dimension 2n ´ 1.

Remark: BX has the homotopy type of the biundary of the
simple real oriented blowup of a good compactification of Z
along its normal crossing boundary.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (ii)
Suppose X “ Z pCq for a smooth n-dimensional complex
algebraic variety Z , then

Claim: The canonical map BX ÝÑ X induces a restriction
morphism of derived locally f.p. Artin stacks

r : LocG pX q ÝÑ LocG pBX q.

which is equipped with a canonical p2´2nq-shifted Lagrangian
structure with respect to the canonical shifted symplectic struc-
ture on LocGpBX q.
In particular r can be viewed as a p2 ´ 2nq-shifted Poisson
structure on LocG pX q.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (i)
Assume Z admits a smooth compactification Z Ă Z with
D “ Z ´ Z “

š
i Di a smooth divisor. Then

BX “„ (oriented circle bundle over D) classified by
elements αi Ă H2pDi ,Zq, αi “ c1pNDi {Zq.

Given λi P G with centralizer Zi , the group S1 acts on
BZi (via λi) and naturally on rG{G s so that the
Lagrangian structure on the map BZi Ñ rG{G s is
S1-equivariant.

Twisting by αi gives a 1-shifted Lagrangian morphism

(:i) αi
ĂBZ i ÝÑ αi

ČrG{G s

of locally constant families of derived Artin stacks over Di .
Tony Pantev University of Pennsylvania

Betti/de Rham moduli



Introduction Results Betti moduli de Rham moduli Odds and ends

Structures on Betti spaces

Symplectic leaves - smooth D (ii)
Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocZi ,αi
pDiq “ Γ

´
Di , αi

ĄBZi

¯

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)
Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocZi ,αi
pDiq “ Γ

´
Di , αi

ĄBZi

¯

G local systems on the
component BiX of BX
mapping tp Di

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)
Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocZi ,αi
pDiq “ Γ

´
Di , αi

ĄBZi

¯

Zi local systems on Di

twisted by αi
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)
Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocZi ,αi
pDiq “ Γ

´
Di , αi

ĄBZi

¯

Since Di is a compact topological manifold endowed with a
canonical orientation the map (:i) induces a p3 ´ 2nq-shifted
Lagrangian morphism of derived Artin stacks

ri : LocZi ,αi
pDiq ÝÑ LocGpBiX q.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (iii)
Combining all ri we get a p3 ´ 2nq-shifted Lagrangian
morphism

r “
ź

i

ri :
ź

i

LocZi ,αi
pDiq ÝÑ

ź

i

LocG pBiX q “ LocG pBX q.

By the Lagrangian intersection theorem [PTVV] the fiber
product of derived stacks

LocGpX , tλiuq :“

˜
ź

i

LocZi ,αi
pDiq

¸
ą

LocG pBX q

LocGpX q

has a canonical p2 ´ 2nq-shifted symplectic structure.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (iv)
By construction

LocG pX , tλiuq is the derived stack of G -local systems on
X whose local monodromy around Di is fixed to be in the
conjugacy class Oλi

of λi .

The natural map

LocGpX , tλiuq ÝÑ LocGpX q

realizes LocG pX , tλiuq as a generalized symplectic leaf

of the p2 ´ 2nq-shifted Poisson structure on LocGpX q.

This proves part (2) of the Main theorem in the Betti setting.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - two components (i)

Assume D “ Z ´ Z “ D1 Y D2 has two smooth irreducible
components meeting transversally at a smooth D12. Then

BX » B1X
ž

B12X

B2X .

where BiX is an oriented circle bundle over Do
i “ Di ´ D12,

and B12X is an oriented S1 ˆ S1-bundle over D12.

Note: Each BiX has the homotopy type of an oriented
compact manifold of dimension 2n ´ 1 with boundary
canonically equivalent to B12X .

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - two components (ii)

Theorem: [P-Töen]

(i) For a commuting pair of elements pλ1,λ2q P G ˆ G the map

LocG pB1X , λ1q
ą

LocG pB12Xq

LocG pB2X ,λ2q ÝÑ LocG pBXq ˆ LocG pB12X , tλ1, λ2uq

comes equipped with a natural Lagrangian structure.

(ii) If moreover the pair pλ1,λ2q is strict then the derived
Artin stack

LocG pX , tλ1,λ2uq

comes equipped with a natural p2 ´ 2nq-shifted symplectic
structure which is a symplectic leaf of LocG pX q.

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

Perfect complexes with flat connections (i)

Suppose X is a smooth variety over k, and let XDR be the de
Rham functor of X , i.e. the (discrete, underived) stack

XDR : cdgaď0
k

!! Sets Ă SSets

A !! X pSpec pAredqq
The derived stack of perfect complexes with flat
connections on X is by definition

Perf∇pX q “ MapdStk pXDR ,Perfq

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

Perfect complexes with flat connections (ii)

If X is not proper Perf∇pX q is not representable. However,
since X is a finite colimit of affine k-schemes and Perf∇pX q is
a mapping stack one checks that the stack Perf∇pX q has good
infinitesimal properties:

Proposition: Let X be a smooth algebraic variety over k.

The derived moduli stack Perf∇pX q is

nil-complete and infinitesimally cartesian .

Perf∇pX q has a cotangent complex which is perfect at
all field valued points.

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

The formal boundary (i)
Let X Ą X be a good compactification: X is smooth and
proper over k, and D “ X ´ X is a simple normal crossings
divisor. For an étale map u : SpecA Ñ X set

I “ the ideal of u˚D Ă SpecA;
pA “ limn A{I n;

pXD - the formal completion of X along D;

and define derived stacks Perfp xXDq and PerfppBX q whose
points over a derived affine scheme S “ RSpecpBq are

Perf
´

xXD

¯
pSq “ lim

Spec AÑX
PerfpSpec {A b Bq,

PerfppBX qpSq “ lim
Spec AÑX

PerfpSpec {A b B ´ V pI qq.

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

The formal boundary (ii)

Proposition: [BeTe],[Ef],[HePoVe] The k-linear dg cate-
gory of global points PerfppBX qpkq is independent of the choice
of a good compactification X Ă X.

Note: The proof relies on the rigid tubular descent of [BeTe]
which only works for smooth varieties. It is unknown if
PerfppBX qpSq is independent of X for a general affine derived
scheme S (even for a singular affine scheme S).

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

The formal boundary (iii)

Remedy: Work with extendable perfect complexes.
Consider

PerfexppBX q Ă PerfppBX q

defined as the Karoubian image of the map of 8-stacks
PerfppXDq Ñ PerfppBX q.

Proposition: [Efimov,P-Töen]

(a) For any S P dAffk the dg category Perfex ppBX qpSq of
extendable perfect complexes is independent of the
choice of X Ă X.

(b) The derived stack PerfexppBX q is independent of X.

Tony Pantev University of Pennsylvania
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Stacks of flat bundles

The formal boundary (iv)
For an étale map u : SpecA Ñ X and an affine derived
scheme S “ RSpecB set

I “ the ideal of u˚D Ă SpecA;
xDRBpAq “ limn DRpA{I n bk Bq as a B-linear mixed cdga;

xDR
o

BpAq - xDRBpAq with the local equation of D inverted.

Definition:

(a) Perf∇ppBX qpSq is the dg category of sheaves of graded mixed
xDR

o

BpAq-dg modules which are locally free of weight zero.

(b) The derived pre-stack Perf∇,exppBX q is the fiber product
Perf∇ppBX q ˆPerfppBX q Perf

exppBX q.
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Stacks of flat bundles

The formal boundary (v)

Proposition:

(a) The derived pre-stacks Perf∇ppBX q and Perf∇,exppBX q are
stacks.

(b) The derived stack Perf∇,exppBX q is independent of X.

(c) The restriction map R : Perf∇pX q Ñ Perf∇ppBX q is a map of
derived stacks which factors through Perf∇,exppBX q.

(d) Perf∇ppBX q is nil-complete, inf-cartesian, and has a cotangent
complex which is perfect over all field valued points.
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Poisson structures

Poisson structures

Theorem:

(i) The morphism R : Perf∇pX q Ñ Perf∇ppBX q carries a natural
p2 ´ 2nq-shifted isotropic structure.

(ii) The isotropic structure in (i) is Lagrangian over all field
valued points.
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
k

!! SSets

A !! Map pSpX q,BG pAqq
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
k

!! SSets

A !! Map pSpX q,BG pAqq

singular simplices
in X
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
k

!! SSets

A !! Map pSpX q,BG pAqq

simplicial set of
A-points of BG
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
k

!! SSets

A !! Map pSpX q,BG pAqq

Note: LocG pX q admits a nice quotient presentation.
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simlicial model of the loop group ΩxpX q of
loops based at x P X .
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simlicial model of the loop group ΩxpX q of
loops based at x P X .
Note: BΓ‚ is a simplicial free resolution of the pointed
homotpy type pX , xq.

Tony Pantev University of Pennsylvania

Betti/de Rham moduli



Introduction Results Betti moduli de Rham moduli Odds and ends

Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simlicial model of the loop group ΩxpX q of
loops based at x P X .

Then:

RG pΓ‚q is a cosimplicial affine k-scheme;

ΓpRG pΓ‚q,Oq is a commuttative simplicial k-algebra.

Passing to normalized chains gives a AG pX q P cdgaď0
k which

up to quasi-isomorphism is independent of the choice of the
resolution Γ‚.
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Derived stacks of local systems

Derived moduli of local systems (iii)

The conjugation action of G on RpΓ‚q gives an action of G on
the cdga AG pX q and hence on the derived affine scheme
RSpecAG pX q. The quotient stack

LocGpX q “ rRSpecAG pX q{G s

is the derived stack of G -local systems on X .
Back
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Orientations and structures

Orientations and structures (i)
Key observation: Lagrangian structures on a map between
moduli of local systems exist always in the presence of relative
orientations.
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Orientations and structures

Orientations and structures (i)

f : Y Ñ X - a continuous map between finite CW complexes;
C ‚pY ,X q - the cone of the pull-back map f ˚C ‚pX q Ñ C ‚pY q
on singular cochains with coefficients in k.

An orientation of dimension d on f is a morphism of
complexes or : C ‚pY ,X q ÝÑ kr1 ´ ds, which is
non-degenerate in the sense that the pairing

C ‚pX q b C ‚pX ,Y q ÝÑ kr1 ´ ds

given by the composition of or with the cup product on C pX q
is non-degenerate on cohomology and induces a
quasi-isomorphism C ‚pY ,X q » C ‚pX q_r1 ´ ds.
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Orientations and structures

Orientations and structures (ii)

f : Y Ñ X - continuous map of CW complexes equipped with
a relative orientation of dimension d .
G - a reductive algebraic group over k.

Theorem: [Calaque,Brav-Dyckerhoff] The pullback map
on the derived stacks of local systems

f ˚ : LocG pX q ÝÑ LocG pY q

carries a p2´dq-shifted Lagrangian structure which is canonical
up to a choice of a non-degenerate element in Sym2pg_qG .

Back
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Poisson bivectors

Poisson bivectors
For a G -local system ρ P LocG pX q we have

TLocG pX q,ρ “ H‚pX , adpρqqr1s

the bivector p underlying the p2 ´ dq-shifted Poisson
structure on LocG pX q is given by

k

PD

((❚❚
❚❚

❚❚❚
❚❚

❚❚❚
❚❚❚

❚❚
❚❚❚

❚❚❚
❚❚

❚❚❚
❚

p !! pH‚pX , adpρqqr1s b H‚pX , adpρqqr1sqrd ´ 2s

H‚pX , adpρqqr1s b H‚pX , BX ; adpρqqrd ´ 2s

&&

Back
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Obstructions

Obstructions - smooth D (i)

Caution: The derived stack LocZi ,αi
pDiq may be empty.

Indeed:

LocZi ,αi
pDiqpkq is the groupoid of G -local systems on BiX

whose local monodromy around Di is conjugate to λi .

A Zi{Z pZiq-local system on Di determines a class in
H2pDi ,Z pZiqq, which is the obstruction to lifting it to a
Zi -local system.

For LocZi ,αi
pDiqpkq to be non-empty one needs to have a

Zi{Z pZiq-local system on Di whose obstruction class
matches with the image of αi under the map
H2pDi ,Zq Ñ H2pDi ,Z pZiqq given by λi : Z Ñ Z pZiq.
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Obstructions

Obstructions - smooth D (ii)

Example: If G is semisimple, k is algebraically closed, and λi

is a regular semi-simple element, then Zi is a maximal torus in
G and hence the image of αi in H2pDi ,Ziq is zero. If λi is of
infinte order, this forces αi to be a torsion class in H2pDi ,Zq.

Back
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Obstructions

Obstructions - two components (i)

Definition: A pair of commuting elements pλ1,λ2q P G ˆ G
is called strict if the morphism

BZ12 ÝÑ rZ1{Z1s ˆrG˚G{G s rZ2{Z2s

is Lagrangian (for its canonical isotropic structure).

Here G ˚ G Ă G ˆ G is the commuting variety, and Z12 is the
centralizer of the pair pλ1,λ2q.

Note: Strictness is a group theoretic property.
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Obstructions

Obstructions - two components (ii)

Proposition: Let pλ1,λ2q be a commuting pair of elements
in G , and u :“ Id ´ adpλ1q and v :“ Id ´ adpλ2q be the
corresponding endormorphisms of g. Then the pair pλ1,λ2q is
strict if and only u is strict with respect to the kernel of v , i.e.
if and only if

Impv| kerpuqq “ Impv q X kerpuq.

Note: Stricness is symmetric by definition so equivalently
pλ1,λ2q is strict if and only if v is strict with respect to the
kernel of u.
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Obstructions

Obstructions - two components (iii)
Corollary:

If at least one of the λi is semi-simple then the pair
pλ1,λ2q is strict.

If pu, v q form a principal nilpotent pair [Ginzburg], then
the pair pλ1,λ2q is strict.

Caution: Strictness is a non-trivial condition: if λ is any
non-trivial unipotent element in G , then the pair pλ,λq is not
strict. In this case u is a non-zero nilpotent endomorphism of
g and thus kerpuq X Impuq ‰ 0, but Impu| kerpuqq “ 0q.

Back
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Infinitesimal theory

Infinitesimal properties (i)
Note: These are the properties neeeded for applying the
Artin-Lurie representability theorem.
Recall that for any B P cdgaď0

k , any connective B-module M ,
and any k-linear derivation d : B Ñ Mr1s, the square zero
extension B ‘d M of B by M is defined by the cartesian
square of cdga:

B ‘d M !!

''

B
0''

B
d

!! B ‘ Mr1s

where 0 denotes the natural inclusion of B as a direct factor in
the trivial square zero extension B ‘ Mr1s.
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Infinitesimal theory

Infinitesimal properties (ii)
Definition: Let F be a derived stack.

We say that F is infinitesimally cartesian if for any B ,
M and d as above the square

F pB ‘d Mq !!

''

F pBq
0''

F pBq
d

!! F pB ‘ Mr1sq

is cartesian.

We say that F is nil-complete if for any B P cdgaď0
k with

Postnikov tower tBďnun the natural morphism
F pBq ÝÑ limn F pBďnq is an equivalence.

Back
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