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ON THE K-THEORY OF PULLBACKS

GEORG TAMME

Joint with M. Land.

Definition 1. A square of (possibly commutative) rings (we’ll denote ˝) of the form

A //

✏✏

B

✏✏

A
1 // B

1

is called aMilnor square if it is a pullback square and the vertical maps are surjective.

Theorem 2 (Excision; Bass, Milnor, Murthy ’60s). If ˝ is a Milnor square, then

there exists a long exact sequence on K-groups

K1pAq Ñ K1pA1q ‘ K1pBq Ñ K1pB1q BÑ K0pAq Ñ ¨ ¨ ¨
continuing infinitely to the right.

But it does not continue to the left – can we extend it?

Theorem 3 (Swan ’71). There is no functor rK2 : Rings Ñ Ab that would extend

that sequence to the left.

It turns out that we can go to the left, but we have to change B
1
. To do so, we

allow arbitrary E1-rings. Then a Milnor square of E1-rings will just be a pullback

square.

Let Catperf be the category of small, idempotent complete stable 8-categories.

PerfpAq is in this category for any E1-ring A.

Definition 4. (1) A sequence A Ñ B Ñ C in Catperf is exact if A Ñ B is fully

faithful, the composite is zero, and B{A Ñ C is an equivalence.

(2) A functor E : Catperf Ñ Sp is a localizing invariant if it sends exact sequences
to (co)fiber sequences.

Notes by Ian Coley.
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2 GEORG TAMME

Example 5. Nonconnective K-theory, THH, TC.

Now, fix k a connective E8-ring for our base, so we will work with E1-k-algebras

instead.

Theorem 6 (L-T). Any pullback square ˝ in E1-k-algebras gives rise to a new

commutative square

A //

✏✏

B

✏✏

⌘⌘

A
1 //

//

A
1 dB1

A B

$$

B
1

such that any localizing invariant sends the inside square to a pullback square in Sp

and the underlying spectrum of A
1 dB1

A B is A
1 bL

A B.

Example 7. If ˝ is a Milnor square, we can boost it up to a pullback square of

discrete E1-rings. Then

⇡ipA1 dB1
A Bq “ Tor

i
ApA1

, Bq
so, in particular, ⇡0pA1 dB1

A Bq “ B
1
.

Thus what we’re getting is some thickening of our original picture.

Definition 8. A localizing invariant E is truncating if EpAq Ñ Ep⇡0Aq i an equiv-

alence for any connective E1-k-algebra A.

Corollary 9. Any truncating invariant D satisfies excision and nil-invariance, i.e.

EpAq Ñ EpA{Iq is an equivalence for any discrete ring A and nil-ideal I Ä A.

Proof. For excision, that ⇡0pA1dB1
A Bq Ñ ⇡0pB1q is an equivalence is enough (following

the reasoning along). For nil-invariance, we may assume that I Ä A is square-zero

(by induction). Then we have the following pullback square in E1-rings:

A //

✏✏

A{I

✏✏

A{I // A{I ‘ ⌃I

but ⇡0pA{I dA{I‘⌃I
A A{Iq “ A{I so applying E to that diagram and using truncating

gives us enough equivalences to prove nil-invariance. ⇤
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Example 10. Let’s now look at examples of truncating invariants, along with the

original folks who proved the corollary in the specific cases:

‚ HP p´{Qq on Q-algebras, proven truncating by Goodwillie. Corollary proven

by Cuntz-Quillen.

‚ K
inf
Q “ fibpKQ Ñ HNp´bQ{Qq, proven truncating by Goodwillie. Corollary

proven by Cortiñas.

‚ K
inv “ fibpK Ñ TCq, proven truncating by Dundas-Goodwillie-McCarthy.

Corollary proved by Geisser-Hesselholt and Dundas-Kittang.

‚ LKp1qK on Z{N -algebras for N ° 0, proven truncating by L-T and Meier. As

an application, using the corollary we have LKp1qKpZ{pnq » LKp1qKpZ{pq,
where p is the prime implicit in the Kp1q-localization. Quillen showed that

LKp1qKpZ{pq » 0.

Now, K-theory is not truncating, but:

Lemma 11 (Waldhausen). If C Ñ C
1
is an n-connective map of connective E1-rings

(n • 1), then KpCq Ñ KpC 1q is pn ` 1q-connective.
Corollary 12. If our square ˝ is a Milnor square and Tor

i
ApA1

, Bq “ 0 for i “
1, . . . , n ´ 1, then A

1dB1
A Ñ B

1
is n-connective and thus

KpAq //

✏✏

KpBq

✏✏

KpA1q // KpB1q

is n-cartesian (basically the definition). So concretely, the original long exact se-

quence can be extended backwards to Kn.

Remark 13. This implies the result of Suslin on excision, which depended on a

slightly stronger vanishing condition on Tor.

Proof. (of the main theorem) Considering a span A1 pÑ B1 q– B in Catperf, we can

take its lax pullback (aka comma category). Editorial remark: Tamme denotes this

category A1›Ñ̂
B1B but it is more commonly denoted pp{qq or p Ó q in higher category

theory, and we will use pp{qq for brevity.

Concretely, its objects are a
1 P A1

, b P B with a map f : ppa1q Ñ qpbq in B1
. Its

morphisms are induced by those in A1
and B.
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Lemma 14. There is a split exact sequence

B Ñ pp{qq Ñ A1

where this first map is the inclusion b fiÑ p0, b, 0q and the second is the projection. The

splittings are given by the projection and the inclusion a
1 fiÑ pa1

, 0, 0q respectively.

Thus for any localizing invariant, Epp{qq » EpA1q ‘ EpBq in a canonical way.

Now, consider our original square ˝ in E1-rings. Applying Perfp´q we end up in

Catperf and we get a map i : PerfpAq Ñ pPerfppq{Perfpqqq. We have that i is fully

faithful if and only if ˝ is a pullback.

Now, let Q “ cofpiq, concretely the idempotent completion of the Verdier quotient.

This we get a cartesian square in spectra after applying some localizaing invariant

E, where we will write EpCq for EpPerfpCqq:

EpAq //

✏✏

EpBq

✏✏

EpA1q // EpQq

The claim is that Q “ Perfpsomethingq that we can actually write down. Well, as

Q is the quotient of the comma category pPerfppq,Perfpqqq, it is generated by the

images of the generators of PerfpA1q and PerfpBq, namely pA1
, 0, 0q and p0, B, 0q.

Call these elements A
1
, B P Q.

Claim: B generated Q. Actually, either one does, but it’s easier to see it this way.

There is a fibre sequence in Q of the form

p0, B, 0q Ñ ipAq “ pA1
, B, canq Ñ pA1

, 0, 0q

so in Q we have that B is a shift of A1 so we only need one of them to generate

the whole thing. Using Schwede-Shipley recognition principle, we have that Q »
PerfpEndQpBqq. Thus we declare A

1 dB1
A B :“ EndQpBq as an E1-ring.

The final computation that ⇡0 is just B
1
comes from passing to Ind-completions

and computing using the big categories. ⇤
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Example 15. Let k be any discrete ring, then we have a cartesian square in rings

(and E1-rings)

k //

✏✏

krt´1s

✏✏

krts // krt, t´1s
where all maps are inclusions.

Proposition 16. krts dkrt,t´1s
k krt´1s “ kxx, yy{pyx “ 1q, the noncommutative poly-

nomial algebra with the given relation. This is also known as the Toeplitz ring over

k, Tk.

As an application, there is an exact sequence of nonunital rings

0 Ñ Mpkq Ñ Tk Ñ krt, t´1s Ñ 0

where Mpkq is the colimit of Mnpkq. Applying any localizing invariant, we get

that EpMpkq Ñ Tkq is nulhomotopic. Applying the machinery above and Morita

invariance, we get a fibre sequence

EpMpkqq » Epkq 0Ñ EpTkq Ñ Epkrt, t´1sq
and by the main theorems, this allows us to identify

EpTkq » Epkq ‘ NEpkq ‘ NEpkq
where NEpkq “ cofpEpkq Ñ Epkrt, t´1sq. Then

Epkrt, t´1sq » Epkq ‘ NEpkq ‘ NEpkq ‘ ⌃Epkq
so it’s some other form of the Fundamental Theorem of K-theory.

Example 17. We have another cartesian square:

krx, ys{pxyq //

✏✏

krys

✏✏

krxs // k

where the maps are the quotients you think they are, giving krxsdk
krx,ys{pxyqkrys » krts

with |t| “ 2.
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Example 18. The cocartesian square in spectra yields a cartesian one when applying

Mapp´, kq:
S
0 //

✏✏

˚

✏✏

˚ // S
1

fiÑ
k
S1

//

✏✏

k

✏✏

k // k ˆ k

and in this case, k dkˆk
kS1 k » krts (the usual one). This is helpful for computing

KpkS1q.


