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They also discuss an extension to local systems of higher rank.

Ian Coley
A theorem of Simpson on rank one local systems in \C has an analogue in the p-adic world, achieving some interesting corollaries.



ARITHMETIC SUBLOCI OF RANK ONE LOCAL SYSTEMS

HÉLÈNE ESNAULT

Caveat: this talk won’t be very derived, but it will be p-adic. The following is new

work with Moritz Kerz lately available on the arXiv (https://arxiv.org/abs/1902.02961).

Two solid motivations for the following work:

Motivation 1: A theorem of Simpson in Hodge Theory. Let X be a smooth pro-

jective variety over C, and let CharpXpCqq “ HompH1pXq,Cq be the group of local

systems. It’s essentially a torus, endowed with a Riemann-Hilbert correspondence in

a complex-analytic way:

RH : CharpXpCqq –
C-analytic

// R
r
C pXCq

where the righthand side is the group if isomorphism classes of rank 1 integrable

connections. Consider closed and algebraic local system, and assume that the corre-

sponding RHpSq is still closed and algebraic.

Theorem 1 (Simpson). (1) The irreducible components of S have the form a`T

for T a subtorus.

(1’) If S,RHpSq are defined over Q, then a above may be taken to be torsion.

(2) These tori are “motivic”, i.e. they correspond to quotient Hodge structures

of H1; there exists  : X Ñ A to an abelian variety with T “  
˚
CharpApCqq

Problem: (with Kerz) What’s the p-adic arithmetic analogue? Let X{F , F Ä C of

finite type over Q and let GF “ GalpF {F q the absolute Galois group of F . For any

ring A, we have a functor from A-algebras to groups which sends B to HompH1, B
ˆq.

This is representable by an algebra we will call CharApXpCqq.

For p a prime, consider A “ Qp. Then CharQp
pXpCqq “ CharZpˆQpXpCqq. We

can then consider the composite, letting ⇡
ab “ ⇡

ab

1
pXCq,

' : Homctsp⇡ab
;Qˆ

p q “ Homctsp⇡ab
;Zˆ

p q “ CharZp
pQpq Ñ CharQp

pQpq Ñ CharQp
pXpCqq

Notes by Ian Coley.
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The LHS of that is endowed with a Galois action, let S Ä CharQp
be closed and

consider '
´1pSq Ä Homctsp⇡ab

,Qˆ
p q ˝ GF . If '

´1pSq is nonempty, then we could

call S integral.

Theorem 2 (E-K). If S is as above, then

(1) The integral components of S are of the form a ` T for T a subtorus and a

a torsion point.

(2) These tori are motivic under the following a geometric assumption: X is an

algebraic variety over C with weights of H1 all negative. X is smooth or

normal is enough.

Remark 3. The theorem is sharp. Consider a two-point intersection of two rational

curves. This has weight 0, but the components of S which are integral are not torsion,

e.g. pZ Ñ Zˆ
p .

Corollary 4. If S is 0-dimensional, the components of S which are integral are

torsion.

Motivation 2: companions. Let p, p
1
two primes that might be the same, and

let ◆ : Qp Ñ Qp1 be an abstract isomorphism (not a continuous one when p ‰ p
1
). A

corollary of the theorem is the following diagram:

Homctsp⇡ab
,Qˆ

p q '
//

NO MAP

✏✏

CharQp

–◆

✏✏

Homctsp⇡ab
,Qˆ

p1q '1
// CharQp1

where we can’t fill in that righthand side because ◆ isn’t continuous (in general).

However, we know that ◆pSq is closed if S were closed, and we now have the following:

Corollary 5. If S is closed, integral, and Galois-invariant, then so is ◆pSq.

Why is this interesting? We want to extend the above diagram past Qˆ
p “ GL1 Qp

to higher GLr. In this case, taking the form

Homctsp⇡pXCq,GLr Qpq '
//

NO MAP

✏✏

Mirred

B prq
–
✏✏

Homctsp⇡pXCq,Qˆ
p1q '1

//Mirred

B prq
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where Mirred

B prq is the moduli space of rank r local systems over XpCq over Qp or

Qp1 . So if S is closed, integral, and Galois-invariant do we have the same conclusion

for arbitrary r?

Well, what if we try the case S “ ˚. Then we would get Simpson’s integrality

conjecture in full generality. Additionally, joint work with Groechenig gives some

cohomological rigidity results under some assumptions.

Vague Motivation 3: Jumping loci

Let F P D
b
cpXpCq;Cq be a constructible sheaf and i, j P Z. Consider

⌃
i,jpFq :“ tL P CharCpXpCqq : hipX,F b Lq • ju

Corollary 6. If F is arithmetic, then ⌃
i,jpFq is a union of a`T torsion plus motivic

tori.

where arithmetic means that F descends to a number field K{Q and there exist

infinitely many primes p such that F b Qp is integral, Galois-invariant, and lies in

D
b
cpXpCq;Qpq. Technically this is just a su�cient condition for arithmetic.

On the proof of the main theorem:

Theorem 7. Let S be closed, integral, Galois-invariant.

(1) S has dimension 0 if and only if its integral components are torsion.

(2) If S is higher dimension, then torsion points are dense in integral components.

Assume that X is smooth and projective for this illustration. Using a theorem of

Bogomalov, adjusted by Litt, there exists � P GF such that � acts on H
1pXpCq;Qpq

as a homothety by a factor ↵ P Qˆ
p such that |1 ´ ↵| † 1.

Proposition 8 (Key Proposition). Let S 1
be the union of the integral components

of S. Let ⇠ be an integral point of S
1
and consider a residual representation of it.

We have the following picture, where the vertical map is specialization:

Homctsp⇡ab
,Qˆ

p q '
//

sp

✏✏

CharQp

Homctsp⇡ab
,Fˆ

p q
Then sp

´1p⇠q X '
´1pS 1q contains a torsion point
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Note: the proposition implies the density result above. For all nonempty U Ä S
1
,

we need a residual representation all lifts of which are in U . This is a problem for

geometry, so easy.

Proof. Let ⇠ fiÑ r⇠s be a Teichmüller lift from Fˆ
p to W pFˆ

p q Ä Qˆ
p . It might be that �

doesn’t stabilize ⇠, but some power of � does. Thus we should replace S
1
by r⇠´1sS 1

and thereby assume r⇠s “ 1.

Now we have '
´1ppnr⇠´1sS 1q “ rpns'´1pr⇠´1sS 1q. We have at our disposal a log

map which takes a small ball around 1 to a polydisc B in H
1pXpCq,Qpq around 0.

So transport S over to B. � acts (repeatedly) on B by producing lines on S, so they

have to go to zero as ↵
n
approaches infinity. Thus we can conclude that S must

approach 1 so 1 P S.

If 1 P S, then there’s a Gm-action on the cone of 1 coming from �. The lines that

are produced in B come back to our small ball around 1, giving us linearity.

Alternatively, apply Mordell-Lang on tori using results of M. Laurent. ⇤


