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DUALIZING SPHERES FOR p-ADIC ANALYTIC GROUPS WITH
APPLICATIONS TO CHROMATIC HOMOTOPY THEORY

VESNA STOJANOSKA

Joint with Agnes Beaudry, Paul Goerss, and Mike Hopkins.

This subject arose for them in exploring a particular case in chromatic homotopy

theory, but it turned out to work more broadly with p-adic analytic groups.

Example 1. (of groups of interest)

• GLn(Zp)

• §n the Borel stabilizer group, which is ⇠= O
⇥
D
where D is a division algebra of

invariant 1/n over the p-adic numbers, also⇠= Aut(formal group law of height n)
• Gn

⇠= Sn oGal the ‘big stabilizer’ (details unimportant)

• Less interesting, Mn(Zp) or Zd

p
under addition

What’s in common between these groups? They have a open subgroup satisfying

Poincaré duality.

Definition 2. Let � a pro-p group. � is uniformly powerful (u.p.) if:

(1) �/�p
or �/�4

if p = 2 is abelian.

(2) � is topologically finitely generated by some {a1, . . . , ad}
(3) The lower p-series

� = �0 � · · · � �i � �i+1 := �
p

i
[�i,�] � · · ·

has between successive quotients a p-power map �i/�i+1 ! �i+1/�i+2. This

is an isomorphism. In fact, in our situation �i+1 = �
p

i
so we can just as well

require

�i/�i+1
⇠= Z/p{ap

i

1 , . . . , a
p
i

d
}

for the generators as in (2).

Do these actually exist?

Notes by Ian Coley.
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Theorem 3 (Lazard). Any p-adic analytic group G has an open normal subgroup

� that is u.p. (and conversely).

Theorem 4 (Lazard/Serre). If � is u.p. of rank d (i.e. the number of generated

from (2)), then � is a Poincaré duality group of dimension d. Moreover,

H⇤
cts(�;Fp)

⇠= ⇤Fp HomFp(�/�
⇡,Fp)

⇠= ⇤Fp(a
⇤
1, . . . , a

⇤
d
)

where ⇡ = p if p is odd and ⇡ = 4 if p = 2 and a⇤
i
is a dual basis of the generators.

For what comes next, here is a construction from page 24 of Serre’s Galois coho-

mology book:

Serre’s construction of duals: Let A be a finite abelian group on which � acts,

then for (say) our �i as above we can construct colim[H⇤
cts(�i, A)]_ where the colimit

is corestriction along the �i � �i+1.

Well, what if we did that for Zp with � giving the trivial action. This should be

the dualizing module. Except Zp isn’t finite, but this still works okay.

Topological and covariant analogue: Again consider the filtration �i. To get

more topological, consider B�i classifying spaces of profinite groups, so they satisfy

B�i = holim
j

B(�i/�i+j)

We still get maps B�i+1 ! B�i so get a chain B�  · · ·  B�i  · · · . There’s

no corestriction but there’s a stable map that will do what we want, which gives us

transfer maps after applying ⌃
1

of the sort tr : ⌃
1B�i ! ⌃

1B�i+1. Thus we can

take a homotopy colimit to define

!G := hocolim
i,tr

(⌃
1B�i)

^
p

Note: since we’re imagining our � as an open subgroup of some p-adic analytic group
G, we could take ⌃

1BG on to the end of that homotopy colimit, but it doesn’t a↵ect

the final. Also, this colimit is supposed to be denoted with a ‘blackboard bold’ !
but computers have not caught up to that quite yet in a satisfying way.

Lemma 5. !G is equivalent to (Sd
)
^
p
, where d is the rank of �.

If we don’t need to even put ⌃
1BG in the notation, why even bother with G in

the notation of !G? Well, everything in that homotopy colimit is a normal subgroup

of G, so G acts on B�i by conjugation, and the transfers are conjugation-equivariant,

so G acts on !G.
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However, how should G act on (Sd
)
^
p
? Trivially is the only natural option, but

!G almost certainly does not carry a trivial G action. Thus the above equivalence is

non-equivariant.

Motivation. Let Gn = Autk(formal group law of height n), where k is a finite

field. Gn acts on En the Lubin-Tate spectrum, where EhGn
n
' S0

K(n) the K(n)-local
sphere spectrum, which (collectively) are the building blocks of chromatic homotopy

theory.

So what’s the “K(n)-local Spannier-Whitehead dual”? It would be

DnEn := Hom(En, S
0
K(n))

?

' !�1
Gn
^ En

where !Gn turns out to be dualizable, so !�1
Gn

= Hom(!Gn , S
^
p
). That equivalence ? –

which is a Gn-equivariant equivalence – and the dualizability is a theorem of BGHS.

Remark 6. Nonequivariantly, this reduces to DnEn ' ⌃
�n

2
En, which was proven

by Goerss-Hopkins or Strickland.

But how can we get at !G practically? It’s a homotopy colimit, so we can get it

its p-local homology without much trouble a priori, but not much else.

Linearization: Again, in our general setup let � ⇢ G open normal u.p. subgroup

of rank d.

Definition 7. The Lie algebra of G, g, as a set is (�,+, [, ]) where

x + y := lim
k

(xp
k
yp

k
)
1/pk

using the homeomorphism � ! �k by the pk-power map.

We don’t care about the bracket so won’t define it.

As an abelian group g ⇠= Zd

p
. Also, G acts on g by conjugation Zp-linearly by the

adjoint representation.

Definition 8. Let Sg
:= hocolim

i,tr
(⌃

1Bpig)^
p
, i.e. !g.

This comes with a potentially nontrivial G-action, though g acts on Sg
trivially.

Still, nonequivariantly we have that Sg
' (Sd

)
^
p
and g is independent of the choice

of � ⇢ G

Linearization hypothesis: !G 'G Sg
are G-equivariantly equivalent, and it su�ces

because of the particular G-action just to check for a G/Z(G)-equivariant equiva-

lence.
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Thus it definitely holds if G is abelian, but it’s much more interesting in other

cases. It is expected to hold in full generality, but the slight hiccup is that there’s

not actually a map between !G and Sg
which makes it more tricky to check in all

cases.

Remark 9. Both g and Sg
are quite explicit: if G = GLn(Zp), then g ⇠= Mn(Zp). If

G = Gn, then g is the covariant Dieudonné module of the formal group.

Theorem 10 (BGHS). IfH ⇢ G is a finite subgroup such that the p-Sylow subgroup

of V = H/(H \ Z(G)) is an elementary abelian p-group, then !G 'H Sg
.

Consequences: G1 is abelian, so we have relatively few worries and D1E1 ' ⌃
�1E1

equivariantly. For G2, the theorem holds for all p for all finite subgroups, thus

D2(E
hH

2 ) ' (S�g
^ E2)

hH

which allows us to computeK(2) Spannier-Whitehead duals likeD2 TMF ' ⌃
44
TMF.

Proof. The ingredients are all 1990’s, mostly from the mid-1980’s.

(1) !G, Sg
can both be viewed in [BV,BGL1(S0

p
] as stable sphere bundles with

V -action. Actually, we can view them as stable sphere bundles without p-
completing, so in [BV,BGL1(S0

)]. Using Lannes’ T-functor technology we

can identify these homotopy classes as

HomA-alg(H
⇤BGL1(S

0
), H⇤BV )

maps over the Steenrod algebra between those cohomologies. We know a lot

about H⇤BV because (by assumption) V is elementary abelian. We know

a lot about BGL1(S0
) by work of many people, including Madsen, May,

Milgram. . .

In turn, that set can be identified further as

HomA-alg(H
⇤
(BUhµ

p
, H⇤BV )

whose lefthand side is BO^
2 when p = 2 and (BU^

p
)
hCp�1 otherwise. This set

of maps is well understood in terms of characteristic classes.

(2) Show that !G, Sg
give rise to the same characteristic classes, so they must be

equivalent.

⇤


