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SINGULAR SUPPORT FOR CATEGORIES OVER A SCHEME

DMYTRO ARINKIN

Given in an introductory spirit to introduce the concept and motivate it. Most of
this is joint with Dennis Gaitsgory.

Agenda:

(1) Review of singular support for coherent sheaves
(2) Categorification of (1)
(3) Motivation from the local geometric Langlands conjecture

I: Support of X means locations where X is nontrivial, but singular support of X
means directions where X is nontrivial. For X “ distributions, D-modules, coherent
sheaves, categories.

Let X be an a�ne variety over k, char k “ 0 or k “ C. Let F “ CohpXq (for the
moment abelian, not derived). If X is smooth, then F is perfect, so there shouldn’t
be such a thing as singular support. If X is just local complete intersection, then
singular support should measure how far F is from being perfect.

So let’s fix X lci for a bit. Take LX the cotangent bundle, and look at H´1pLXq.
Explicitly, if X “ Spec krx1, . . . , xns{pf1, . . . , fmq “ SpecA,

X ˆ Am Å H
´1pLXq “ tpx P X, a1, . . . , amq :

ÿ

i

aidfipxq “ 0u

Technically we should say that it’s the total space of H´1 – see the video for more de-
tails. Now given F P CohpXq, we get a conical closed subset
singsupppFq Ä H

´1pLXq.
Remark 1. F is perfect if and only if singsupppFq is contained in the zero section.

Singular support is defined via the action of HH
˚pXq on F or, classically, via

cohomological operators (Gulliksen, Eisenbud, Avramov-Buchweitz, Krause-Iyengar-
Benson).

Notes by Ian Coley.
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II. Move one categorical level up

Categories over X are analogous to perfect complexes, and we can identify them
with A-linear categories if X “ SpecA. Categories, of course, means cocomplete
dg-categories. So what should correspond to coherent sheaves on the categorical
side?

The role of H´1pLXq will now be played by T
˚
X categorically. Whereas before

we had X is lci, we now want X to be smooth hereafter. The formalism we hope
for is that for a conical Lagrangian Z Ä T

˚
X we get a 2-category C of categories

with singular support contained in Z. When Z is the zero section, C » A-linear
categories.

Remark 2. This is very similar to Kapustin-Rozansky-Saulina.

We also can take Ctotal “ colimZ CZ , so M P Ctotal is like the Ind-completion of
coherent categories over X. Then we can take singsupppMq “ ì

MPCZ Z.

Example 3. Fix x P X. Consider the dg-scheme x ˆX x “ Specpkx bA kxq –
Spec kr⌘1, . . . , ⌘js where |⌘i| “ ´1. Fact: A-linear categories such that the support
of M is contained in txu is equivalent (as a 2-category) to modules over the monoidal
category Perfpx ˆX xq, where the monoidal action is convolution, not tensor.

The above is actually a lie, but the lie disappears when we Ind-complete. The
convolution unit isn’t actually perfect so we need to pass to the completion to get
it in there. Because x ˆX x is not smooth, coherent sheaves is strictly bigger than
perfect ones, but since it is lci we can understand the di↵erence via singular support.

Definition 4. CTx̊ X is defined to be the 2-category of module categories over CohpxˆX

xq under the convolution product.

Inside of here are modules over Perfpx ˆX xq, which we identify exactly as the
A-linear categories supported at txu.

Generalizations:

(1) If Z Ä T
˚
X is the conormal bundle to some Y Ä X, let CZ be module

categories over CohpY ˆX Y q with the same monoidal structure.
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(2) Even more generally, if Y is smooth, f : Y Ñ X proper, then we get an
isotropic Z Ä T

˚
X:

kerpdfq // //

✏✏✏✏

T
˚
X ˆX Y

✏✏✏✏

Z // // T
˚
X

If Z arises like this, define CZ as above. We still need to show that if the
same Z arises from two di↵erent Y1, Y2 then we get the same 2-category, but
this is settled:

Theorem 5. If Y1 Ñ X – Y2 such that Z1 Ä Z2 (as above), there is a
natural 2-full embedding CohpY1 ˆX Y1q-mod Ñ CohpY2 ˆX Y2q-mod.

Final remark: this kind of map should be given by a bimodule – what is
it?

III. Motivation Automorphic questions have Galois answers in this program. A
global automorphic question is given by local systems on a Riemann surface with
Arthur parameters. A local automorphic question is given by local systems on a
punctured disc plus Arthur parameters which sit in singular support.

In the global picture: perfect complexes on X “ LS⌃ for ⌃ a Riemann surface, we
correct the issue by using coherent sheaves on X with controlled (nilpotent) singular
support. This makes sense because LS⌃ is lci but not a smooth stack.

In the local picture, consider categories over X “ LSD˝, the punctured disc.
We need something to correct it, but that X is smooth ... and there’s no singular
support on smooth objects. But singular support does still exist by passing to Ind-
completion of coherent categories overX with controlled (nilpotent) singular support.
Unfortunately, this is not quite an algebraic stack. Nonetheless it’s still workable!


