

17 Gauss Way Berkeley, CA 94720-5070 p: 510.642.0143 f: 510.642.8609 www.msri.org

NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Name: lan Coley	Email/Phone: msri@iancoley.org
Speaker's Name: Laurent Fargues	
Talk Title: Geometrization of the local Langlands correspondence	
Date: <u>3 / 28 / 19</u> Time: _	<u>2</u> :00 am pm circle one)
Please summarize the lecture in 5 or fewer sentences: Bung_G is studied in many contexts, but in the p-adic local Langlands program it contains both arithmetic and geometric data.	
Work with Scholze (based on earlier	with with Fontaine) on this subject is detailed

CHECK LIST

(This is **NOT** optional, we will **not pay** for **incomplete** forms)

- ☑ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.
- Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.
 - <u>Computer Presentations</u>: Obtain a copy of their presentation
 - **Overhead**: Obtain a copy or use the originals and scan them
 - <u>Blackboard</u>: Take blackboard notes in black or blue **PEN**. We will **NOT** accept notes in pencil or in colored ink other than black or blue.
 - <u>Handouts</u>: Obtain copies of and scan all handouts
- For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.
- When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list.
 (YYYY.MM.DD.TIME.SpeakerLastName)
- Email the re-named files to <u>notes@msri.org</u> with the workshop name and your name in the subject line.

GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE

LAURENT FARGUES

 Bun_{G} – what is it? Well, it's the moduli space of G bundles on a space X. Examples:

- A compact Lie group acting on a Riemann surface (Atiyah-Bott)
- A reductive group over \mathbb{F}_q acting on a proper smooth algebraic curve over \mathbb{F}_q (Geometric Langlands)
- Today: a reductive group over \mathbb{Q}_p acting on "the curve" (Fargues-Fontaine)

It's a stack of an arithmetic/geometric nature. Arithmetically, Frobenius is incorporated into the geometry, which is unique among the above examples. For geometric, consider X a curve. If we take $\mathcal{F} \in \text{Perv}(\text{Bun}_{G})$ a Weil sheaf, the trace of Frobenius gives an automorphic form on $G(F)\backslash G(A)$, where $F = \mathbb{F}_q(X)$.

Where's it from?

- At the ∞ place, Schmid: embeds Harish-Chandra discrete series into $H_{L^2}($ symmetric spaces)
- At the p place (here and after), Harris-Taylor: local Langlands for GL_n embeds into H(Lubin-Tate)
- Fargues: local *p*-adic Langlands for GL_n embeds into H(Rapoport-Zink spaces).
- F-F: fundamental curve of *p*-adic Hodge theory
- Scholze: perfectoid spaces, diamonds, local Shtuka,...

 Bun_G encapsulates it all!

The Curve: a *p*-adic Riemann surface. Let $F/\overline{\mathbb{F}}_p$ be a perfected field. Consider $X_F \to \operatorname{Spec} \mathbb{Q}_p$ (uniformized), let ϕ be the Frobenius of F. Then $X_F = Y_F/\phi^{\mathbb{Z}}$ where $Y = \{0 < |p| < 1\}$ is built out of $W(\mathcal{O}_F)$ the Witt vectors with coefficients in \mathcal{O}_F .

Notes by Ian Coley.

LAURENT FARGUES

Pick any perfectoid space $S/\overline{\mathbb{F}}_p$, which gives us a generalized $X_S \to \operatorname{Spec} \mathbb{Q}_p$. X_S we should think of as a family of $X_{k(s)}$ for $s \in S$.

Definition 1. Bun_G \rightarrow Spec $\overline{\mathbb{F}}_p$ for G a reductive group over \mathbb{Q}_p : for $S \in \operatorname{Perf}_{\mathbb{F}_p}$ the fibre of the map should be G-bundles on X_S .

Theorem 2. It's a stack for the *v*-topology of Scholze (analogous to fpqc).

Structure:

Consider $\check{\mathbb{Q}}_p = \widehat{\mathbb{Q}_p^{\text{unr}}}$ with an action σ of Frobenius. Let $B(G) = G(\check{\mathbb{Q}}_p)/\sigma$ -conjugacy, $b \sim gbg^{-\sigma}$.

Theorem 3 (F.). $B(G) \rightarrow |\operatorname{Bun}_G|$ is an equivalence where $[b] \mapsto [\xi_b]$ something wasn't described. But ξ_1 is the trivial *G*-bundle.

If b is "basic" (i.e. isoclinic), then ξ_b is semistable. So in this case, let J_b be the σ -centralizer of b, which is an inner form of G. All inner forms of G looks like this when Z(G) is connected (e.g. GL_n). This is an extended *pure inner form* (Vogan).

Theorem 4 (F-Scholze). $c_1: \pi_0 \operatorname{Bun}_G \xrightarrow{\sim} \pi_1(G)_{\Gamma}$, where $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Moreover, each connected component has a unique semistable point.

Interpreted, this means that $B(G)_{\text{basic}} \cong \pi_1(G)_{\Gamma}$. Now let us focus on the semistable locus $\text{Bun}_{G}^{\text{ss}}$ an open substack of Bun_{G} .

 $\operatorname{Bun}_{G}^{\operatorname{ss}} = \coprod_{[b] \operatorname{basic}} [\bullet = \operatorname{Spec}(\overline{\mathbb{F}}_p) / \underline{J_b}(\mathbb{Q}_p)]$ the classifying stack of proétale $J_b(\mathbb{Q}_p)$ -torsors, and the underline means we restrict to locally profinite.

Geometrization: Let $\ell \neq p$. Let Π be an irreducible smooth \mathbb{Q}_{ℓ} -representation of $J_b(\mathbb{Q}_p)$. In general such Π are infinite dimensional, and is the local component at pof an automorphic representation of a global object. Π gives us \mathcal{F}_{Π} a local system on $j: [\bullet/J_b(\mathbb{Q}_p)] \to \text{Bun}_{\mathcal{G}}$ a "purely stupid construction" and an open inclusion. Thus Π yields an ℓ -adic sheaf $j_!\mathcal{F}_{\Pi}$ on $\text{Bun}_{\mathcal{G}}$ (where $j_!$ is extension by zero).

Theorem 5 (F-Scholze). Bun_G is ℓ -cohomologically smooth of dimension zero. The dualizing complex $K_{\text{Bun}_{G}}$ is isomorphic to $\overline{\mathbb{Q}}_{\ell}$ the trivial local system.

To prove this, we need to think on Bun_{G} through some concrete cohomologically smooth charts: developed to do this were some new kinds of algebraic geometry in Banach-Colmez spaces = $H^{0}(\operatorname{curve}, \operatorname{v.b.})$ an analogue of affine space. **Theorem 6** (F-S). There's a Jacobian criterion of cohomological smoothness. **Example 7.** $[\mathbb{B}^+_{crvs}(-)]^{\phi^h = p^d}$ for $d, h \in \mathbb{N}^+$ is a Banach-Colmez space.

Hecke Correspondences: Let $S \in \operatorname{Perf}_{\overline{\mathbb{F}}_p}$ be a perfectoid space, S^{\sharp} an until of S over \mathbb{Q}_p . We can see S^{\sharp} embeds in X_S as a Cartier divisor of degree 1. Then the formal completion of X_S along S^{\sharp} correspond got Fontaine's \mathbb{B}^+_{dB} .

Let Div^1 be the moduli space of degree 1 Cartier divisors = $\operatorname{Spa}(\mathbb{Q}_p)^{\diamond}/\phi^{\mathbb{Z}}$ a sheaf of untilts. For any finite set I, we get a span $\operatorname{Bun}_G \leftarrow \operatorname{Hecke} \xrightarrow{\star} \operatorname{Bun}_G \times (\operatorname{Div}^1)^I$ along with geometric Satake on the \mathbb{B}_{dR} -affine Grassmannian.

For any $\rho \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(G^{I})$ we get a kernel on Hecke_{I} . Because the map \star is a locally trivial fibration in the \mathbb{B}_{dR} affine Grassmannian, all this together gives us a cohomological Hecke correspondence on Bun_{G} (pullback, twist by kernel, pushfoward).

Using V. Lafforgue's machinery,

Theorem 8 (F-S). If Π is a smooth irreducible representation of $G(\mathbb{Q}_p)$, we get $\phi_{\Pi} \colon W_{\mathbb{Q}_p} \to {}^L G$ the semisimplified Langlands parameter, giving a local Langlands correspondence for any group G. Moreover, is compatible with the cohomology of local Shtuka moduli spaces.

Proof. $\Pi \mapsto j_! \mathcal{F}_{\Pi} \mapsto$ apply the Hecke correspondence and iterate which gets you to the parameter. \Box

There should also be a way to get from ϕ to $\mathcal{F}_{\phi} \in \operatorname{Perv}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Bun}_{G})$. Very little is known, but we do know GL_{1} :

Theorem 9 (F). For all $d \ge 3$, AJ^d : $\text{Div}^d \to \text{Pic}^d \subset \text{Bun}_{\text{GL}_1} = \text{Pic}$ which sends $D \mapsto \mathcal{O}(D)$ is a proétale locally trivial fibration in simply connected diamonds, where $\text{Div}^d = (\text{Div}^1)^d / \sigma_d$