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Work with Scholze (based on earlier with with Fontaine) on this subject is detailed

Ian Coley
Bung_G is studied in many contexts, but in the p-adic local Langlands program it contains both arithmetic and geometric data.



GEOMETRIZATION OF THE LOCAL LANGLANDS
CORRESPONDENCE

LAURENT FARGUES

BunG – what is it? Well, it’s the moduli space of G bundles on a space X.

Examples:

‚ A compact Lie group acting on a Riemann surface (Atiyah-Bott)

‚ A reductive group over Fq acting on a proper smooth algebraic curve over Fq

(Geometric Langlands)

‚ Today: a reductive group over Qp acting on “the curve” (Fargues-Fontaine)

It’s a stack of an arithmetic/geometric nature. Arithmetically, Frobenius is in-

corporated into the geometry, which is unique among the above examples. For geo-

metric, consider X a curve. If we take F P PervpBunGq a Weil sheaf, the trace of

Frobenius gives an automorphic form on GpF qzGpAq, where F “ FqpXq.

Where’s it from?

‚ At the 8 place, Schmid: embeds Harish-Chandra discrete series into

HL2psymmetric spacesq
‚ At the p place (here and after), Harris-Taylor: local Langlands for GLn em-

beds into HpLubin-Tateq
‚ Fargues: local p-adic Langlands for GLn embeds intoHpRapoport-Zink spacesq.
‚ F-F: fundamental curve of p-adic Hodge theory

‚ Scholze: perfectoid spaces, diamonds, local Shtuka,. . .

BunG encapsulates it all!

The Curve: a p-adic Riemann surface. Let F {Fp be a perfectoid field. Consider

XF Ñ SpecQp (uniformized), let � be the Frobenius of F . Then XF “ YF {�Z
where

Y “ t0 † |p| † 1u is built out of W pOF q the Witt vectors with coe�cients in OF .

Notes by Ian Coley.
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2 LAURENT FARGUES

Pick any perfectoid space S{Fp, which gives us a generalized XS Ñ SpecQp. XS

we should think of as a family of Xkpsq for s P S.

Definition 1. BunG Ñ SpecFp for G a reductive group over Qp: for S P PerfFp the

fibre of the map should be G-bundles on XS.

Theorem 2. It’s a stack for the v-topology of Scholze (analogous to fpqc).

Structure:

Consider qQp “ yQunr
p with an action � of Frobenius. LetBpGq “ GpqQpq{�-conjugacy,

b „ gbg
´�

.

Theorem 3 (F.). BpGq Ñ |BunG | is an equivalence where rbs fiÑ r⇠bs something

wasn’t described. But ⇠1 is the trivial G-bundle.

If b is “basic” (i.e. isoclinic), then ⇠b is semistable. So in this case, let Jb be the

�-centralizer of b, which is an inner form of G. All inner forms of G looks like this

when ZpGq is connected (e.g. GLn). This is an extended pure inner form (Vogan).

Theorem 4 (F-Scholze). c1 : ⇡0 BunG
„Ñ ⇡1pGq�, where � “ GalpQp{Qpq. Moreover,

each connected component has a unique semistable point.

Interpreted, this means thatBpGqbasic – ⇡1pGq�. Now let us focus on the semistable

locus BunG
ss
an open substack of BunG.

BunG
ss “ ≤

rbs basicr‚ “ SpecpFpq{JbpQpqs the classifying stack of proétale JbpQpq-
torsors, and the underline means we restrict to locally profinite.

Geometrization: Let ` ‰ p. Let ⇧ be an irreducible smooth Q`-representation

of JbpQpq. In general such ⇧ are infinite dimensional, and is the local component at p

of an automorphic representation of a global object. ⇧ gives us F⇧ a local system on

j : r‚{JbpQpqs Ñ BunG a “purely stupid construction” and an open inclusion. Thus

⇧ yields an `-adic sheaf j!F⇧ on BunG (where j! is extension by zero).

Theorem 5 (F-Scholze). BunG is `-cohomologically smooth of dimension zero. The

dualizing complex KBunG is isomorphic to Q` the trivial local system.

To prove this, we need to think on BunG through some concrete cohomologically

smooth charts: developed to do this were some new kinds of algebraic geometry in

Banach-Colmez spaces = H
0pcurve, v.b.q an analogue of a�ne space.
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Theorem 6 (F-S). There’s a Jacobian criterion of cohomological smoothness.

Example 7. rB`
crysp´qs�h“pd

for d, h P N`
is a Banach-Colmez space.

Hecke Correspondences: Let S P PerfFp
be a perfectoid space, S

7
an untilt of

S over Qp. We can see S
7
embeds in XS as a Cartier divisor of degree 1. Then the

formal completion of XS along S
7
correspond got Fontaine’s B`

dR.

Let Div
1
be the moduli space of degree 1 Cartier divisors = SpapQpq˛{�Z

a sheaf

of untilts. For any finite set I, we get a span BunG – Hecke
‹Ñ BunG ˆpDiv1qI along

with geometric Satake on the BdR-a�ne Grassmannian.

For any ⇢ P RepQ`
pGIq we get a kernel on HeckeI . Because the map ‹ is a locally

trivial fibration in the BdR a�ne Grassmannian, all this together gives us a cohomo-

logical Hecke correspondence on BunG (pullback, twist by kernel, pushfoward).

Using V. La↵orgue’s machinery,

Theorem 8 (F-S). If ⇧ is a smooth irreducible representation of GpQpq, we get

�⇧ : WQp Ñ L
G the semisimplified Langlands parameter, giving a local Langlands

correspondence for any group G. Moreover, is compatible with the cohomology of

local Shtuka moduli spaces.

Proof. ⇧ fiÑ j!F⇧ fiÑ apply the Hecke correspondence and iterate which gets you to

the parameter. ⇤

There should also be a way to get from � to F� P PervQ`
pBunGq. Very little is

known, but we do know GL1:

Theorem 9 (F). For all d • 3, AJ
d
: Div

d Ñ Pic
d Ä BunGL1 “ Pic which sends

D fiÑ OpDq is a proétale locally trivial fibration in simply connected diamonds, where

Div
d “ pDiv1qd{�d


