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Aim of the talk

Describe our first steps in the application of derived and non-commutative
algebraic geometry to arithmetic geometry

• Vanishing cohomology and non-commutative motives (and derived
algebraic geometry): joint with A. Blanc, M. Robalo and B. Toën

• Application to Bloch’s Conductor Conjecture: joint with B. Toën, in
progress.
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Plan of the talk

1 ¸-adic cohomology of dg-categories

2 ¸-adic cohomology of singularity dg-categories vs. vanishing cycles

3 Chern character and trace formula for dg-categories

4 Categorical Bloch’s conductor conjecture

5 A new approach (in progress)

6 Future directions



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”

(commutative spaces as nc spaces: D(X ) where D = Dperf or D
b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?

Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology:

Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work:

sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space.

Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories

“dg categories” =: “non commutative (nc) spaces”
(commutative spaces as nc spaces: D(X ) where D = Dperf or D

b

coh
)

What informations out of a nc-space ?
Mainly cohomology: Hochschild HH and variants (periodic, cyclic etc):
Tsygan, Kontsevich, Keller, Orlov, Efimov, etc.

Our contribution: ¸-adic cohomology for nc-spaces.

Main idea behind our work: sometimes it is very useful to realize a certain
complex (arising in commutative algebraic geometry) as the cohomology
complex of a nc-space. Particularly relevant for applications to arithmetic
geometry.



¸-adic cohomology of dg-categories I

Fix A: commutative ring; ¸: prime di�erent from residue characteristics of A.

Theorem (Blanc-Robalo-Toën-V, 2016)
One can define the ¸-adic cohomology of an A-dg-category T :

H(T/S,Q¸) œ ShQ¸(S)

i.e. is an ¸-adic sheaf on S = Spec A with Q¸ coe�cients.

If p : X æ S is proper, and X is qc and qsep, then

H(Perf (X )/S,Q¸) ƒ Hét(X/S,Q¸(•)[2•]) :=
n

n

pú(Q¸(n)[2n])

(If S = Spec (k = k̄), then H
n(Perf (X )/k,Q¸)) ƒ

m
i
H

n+2i

ét (X ,Q¸))

Notation: Q¸(—) := Q¸(•)[2•] ©
m

nœZ
Q¸(n)[2n] (“2-periodic Q¸ coe�cients”):

Q¸(—) is a commutative ring in ShQ¸(S).

H(T/S,Q¸) is 2-periodic up to a Tate twist, i.e. H(T/S,Q¸)(1)[2] ƒ H(T/S,Q¸)
(a Q¸(—)-module).
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¸-adic cohomology of dg-categories II

How do we construct the ¸-adic cohomology of dg-categories over S = Spec A ?

from dg-categories to commutative motives:
we can define a non-commutative motivic realization
M‚

S
: dgCatS æ SH(S) : T ‘≠æ (Y /S ‘æ K (T ¢A Perf (Y )))

(rigorous definition uses full strength of SH
nc(S) : symmetric monoidal, stable,

presentable Œ-category of non-commutative motives over S, by Robalo).

M‚
S

is lax monoidal hence factors as M‚
S

: dgCatS æ ModBUS
(SH(S)),

where BUS is the motivic spectrum of (homotopy) algebraic K-theory.

from commutative motives to ¸-adic sheaves on S (= ¸-adic realization) :
r¸,S : ModBUS

(SH(S)) æ ShQ¸(S))
commutative rational ¸-adic realization (based on Cisinski-Deglise and Ayoub).
r¸,S is monoidal and r¸,S(BUS) ƒ Q¸(—), hence
r¸,S : ModBUS

(SH(S)) æ ModQ¸(—)(ShQ¸(S)).

compose r¸,S ¶ M‚
S

to get H(≠/S,Q¸) : dgCatS æ ModQ¸(—)(ShQ¸(S)).

for p : X æ S as above, H(Perf (X )/S,Q¸) ƒ pú(Q¸(—)X ).
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dg-category of singularities

Given a Landau-Ginzburg pair (p : X æ S, f : X æ A
1

S) ∆ derived pullback

X0

i //

✏✏

X

f

✏✏

S
0 // A

1

S

i.e. X0 is the derived zero locus of f .

dg-cat of singularities
For any scheme qc&qsep Y , Sing(Y ) := Coh

b
(Y )/Perf (Y ) : absolute dg-cat of

singularities (trivial if Y is regular) .

Sing(X , f ) := ker(iú : Sing(X0) æ Sing(X)) ƒ Coh
b
(X0)/Coh

b
(X0)perf on X :

dg-cat of singularities of the pair (X , f ) (over S).

Note : 1) i is derived lci hence iú preserves perfect objects.

2) If X is regular, Sing(X , f ) ƒ Sing(X0) (obvious).

3) If X regular and f a non-zero divisor, X0 ƒ usual, underived zero locus of f .

4) Sing(S = Spec A, f = 0 : S æ A
1

S) ƒ Perf (A[u, u
≠1

]) ƒ A[u, u
≠1

] , where deg(u) = 2,

and any Sing(X , f ) is a module over this Sing(S, 0).
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Vanishing cycles and singularity dg-categories I

Let S = Spec A henselian trait (e.g. A complete dvr), fi œ A uniformizer,
K = Frac(A), k = A/fi

Spec k = ‡ i // S ÷ = Spec K
j

oo (ú)

Given p : X æ S =∆ base change p along (ú), to get

X‡
iX // X X÷

jX
oo

Rmk. If X0 denotes the (derived) zero-locus of fi : X
p
// S

fi // A
1

S
,

then X0 ƒ X‡.

For E œ ShQ¸(X ), denote by �p(E ) œ ShQ¸(X‡̄)Gal(÷̄|÷): vanishing cycles of
E w.r. to p.

Recall : 1 æ I æ Gal(÷̄|÷) æ Gal(‡̄|‡) æ 1 (I: Inertia group)
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Rmk. If X0 denotes the (derived) zero-locus of fi : X
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,

then X0 ƒ X‡.

For E œ ShQ¸(X ), denote by �p(E ) œ ShQ¸(X‡̄)Gal(÷̄|÷): vanishing cycles of
E w.r. to p.

Recall : 1 æ I æ Gal(÷̄|÷) æ Gal(‡̄|‡) æ 1 (I: Inertia group)
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Vanishing cycles and singularity dg-categories II

Theorem (Blanc-Robalo-Toën-V, 2016)
Let X be regular, p : X æ S proper flat morphism over an excellent strictly
henselian trait S = Spec A . Denote i : ‡ Òæ S, p‡ : X‡ æ ‡. There is a canonical
equivalence

iúp‡ ú�p(Q¸(—)X )[≠1])hI ƒ H(Sing(X‡)/S,Q¸)

of 2-periodic Q¸-adic complexes over S .

Rmks. 1) Strictly henselian hypothesis not necessary (just makes it for an easier
statement).

2) Both sides are naturally Q¸,S(—)hI ƒ Q¸,S(—) ü Q¸,S(—)(≠1)[≠1]-modules in
ShQ¸(S), and the equivalence of Theorem is actually an equivalence of such
modules.

3) The above comparison Theorem actually holds before ¸-adic realization, i.e. at
the level of commutative motives: the commutative motive associated to
Sing(X , f ) is equivalent to Ayoub’s motivic tame vanishing cycles.
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Chern character for dg-categories

Fix B an EŒ-algebra over A (A is our excellent base ring). Write H(≠,Q¸) for
H(≠/A,Q¸) (i.e. everything will be relative to the base S = Spec A).
Note that H(B,Q¸) is an EŒ-algebra in ShQ¸(S).

Consider T œ dgCatB := ModB(dgCatA). Then H(T ,Q¸) is a module over
H(B,Q¸).
The functor

|H(≠,Q¸)| : dgCatB

H(≠,Q¸)
// ShQ¸(S) � // VectQ¸

EML // Spectra

is lax symmetric ¢. By the universal property of (non-connective, homotopy
invariant) algebraic K-theory K : dgCatB æ Spectra in nc-motives (Robalo,
Tabuada) there is a unique natural transformation (up to a contractible space of
choices)

¸-adic Chern character for dg-categories
Ch : K æ |H(≠,Q¸)| lax symmetric ¢ transformation of lax symmetric ¢ functors
dgCatB æ Spectra.
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Trace formula for dg-categories I

As before, fix B an EŒ-algebra over A. dgCatB := ModB(dgCatA) is
symmetric ¢, and T œ dgCatB is called smooth&proper (over B) if it is a
dualizable (© rigid) object in dgCatB.
The ¸-adic realization functor H(≠,Q¸) is only lax-¢, so we give the
following:

¸¢-admissibility
A smooth&proper T œ dgCatB is ¸¢-admissible if the canonical map

H(T op,Q¸) ¢H(B,Q¸) H(T ,Q¸) æ H(T op ¢B T ,Q¸)

is an equivalence in ShQ¸(S).

Note: T ¸¢-admissible ∆ H(T ,Q¸) is dualizable in H(B,Q¸) ≠ Mod , with
dual H(T op,Q¸).
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Trace formula for dg-categories II

Let T be smooth&proper, and f : T æ T in dgCatB.
Datum of f … datum of �f œ Perf (T op ¢B T ).

Consider the composition B
�f // T

op ¢B T
ev // B .

This is equivalent to a perfect B-module denoted HH(T/B, f ).
We get, in particular:
• a class [HH(T/B, f )] œ K0(B) (the HH-theoretic trace of f ).

On the other hand,
if T is moreover ¸¢-admissible, we can apply the same procedure to
H(f ,Q¸) in place of f itself
=∆ get a map H(B,Q¸) æ H(B,Q¸) of H(B,Q¸)-modules.
By taking | ≠ | of this map, we finally get:
• an element TrB(H(f ,Q¸)) œ fi0(|H(B,Q¸)|) (the ¸-adic trace of f ).
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Trace formula for dg-categories III

The non-commutative ¸-adic trace formula tells us that the HH-theoretic
trace and the ¸-adic trace of f are related by the ¸-adic Chern character:

Trace formula (Toën-V, 2016)
If T œ dgCatB is smooth&proper and ¸¢-admissible over B, then
Ch0([HH(T/B, f )]) = TrB(H(f ,Q¸)) in fi0(|H(B,Q¸)|).

Remarks. 1) The lhs should be interpreted as the intersection number of the
graph �f with the diagonal of T (virtual number of fixed points of f ).
2) When Z æ K0(B) and Q¸ æ fi0(|H(B,Q¸)|) are isos, Ch0 is the natural
inclusion Z Òæ Q¸, and the formula is just an equality of ¸-adic numbers.
3) When T = Perf (X ) for X a smooth proper variety over a finite field,
recover Grothendieck-Verdier Lefschetz-type trace formula (SGA 5).
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Trace formula for dg-categories IV

Corollary. Take A = B := Fq and T = Perf (X ) for X a proper smooth
Deligne-Mumford stack over A. Then

|X (Fq)| =
ÿ

i

(≠1)i
Tr(Frob

ú | H
i

orb(X̄ ,Q¸))

where H
ú

orb
(X̄ ,Q¸) := H

ú(LX̄ ,Q¸) is the Q¸-adic orbifold cohomology of X̄ .

≥
The above trace formula has a version for B being just an E2-algebra over A.
This is technically a bit involved but it works: dgCatB is no more a monoidal
category so we need to define dualizability, i.e. “smoothness&properness”,
in an appropriate sense ( use adjoints in (Œ, 2)-categories).
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Trace formula for dg-categories V

But first: Why do we care about allowing B to be just E2 over A ??

Because it plays a crucial role in our approach to Bloch’s conductor
conjecture.
In this application, we will want to take T = Sing(X , f ) and this category is
2-periodic (it is a module over Sing(S, 0) ƒ A[u, u

≠1], deg(u) = 2)
=∆ it will never be proper over a base B which is not itself 2-periodic, in
particular it will not be proper over the base ring A.
Luckily, there exists a natural A-algebra B such that T is a B-dg category
and T is proper over B (and smooth and ¸¢-admissible). But such B is
only E2 over A.

Let’s describe quickly this E2-version of our the trace formula, then we will
move to Bloch’s conductor conjecture.
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Fancy trace formula for dg-categories I

We take B an E1-algebra in dgCatA (e.g. B is an E2-algebra over A).
Let dgCatB := Mod

left

dgCatA
(B) (dg-categories over B). There is a

generalization of the notion of "smooth and proper" (aka "dualizable")
dg-categories for dg-categories over B.
If T is smooth and proper over B, any endomorphism f : T æ T in dgCatB

has a trace
TrB(f ) : A æ HH(B/A) := B ¢B¢ABo B

which is a morphism in dgCatA. Here, HH(B/A) œ dgCatA is Hochschild
homology in this context.
Rmk. [Comparison with the EŒ-case] If B is actually EŒ

1C

TrB(f )

✏✏

unit // B

Tr
EŒ
B

(f )

✏✏

HH(B)
augm

// B
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Fancy trace formula for dg-categories II

If in addition to being smooth&proper over B, T also satisfies
¸¢-admissibility in this context, then we have the following generalization of
our previous EŒ-trace formula

Trace formula - the E2-case (Toën-V, 2017)
Let B an E2-algebra over A (or just an E1-algebra in dgCatA), T œ dgCatB

smooth&proper and ¸¢-admissible over B, f : T æ T map in dgCatB , then

Ch0([HH(T/B, f )]) = trH(B,Q¸)(H(f ,Q¸))

in H
0(Sét ,H(HH(B/A),Q¸)).

We will now apply this formula (for f = idT , and an appropriate T ) to
Bloch’s conductor conjecture.
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Bloch’s conjecture I

Bloch’s Conductor Conjecture (BCC)
Let S = Spec A henselian trait with perfect residue field k, p : X æ S proper, flat,
with smooth generic fiber, and X regular. Fix ¸ ”= char(k). Then

[�X , �X ]S = ‰¸(Xk̄
) ≠ ‰¸(XK̄

) ≠ Sw(X
K̄

)

where ‰¸ is the ¸-adic Euler characteristic, Sw(X
K̄

) is the Swan conductor of the
Gal(K̄ )-representation H

ú(X
K̄

,Q¸), and [�X , �X ]S is called Bloch’s number i.e.
the degree in CH0(k) ƒ Z of Bloch’s localised self-intersection
(�X , �X )S œ CH0(Xk) of the diagonal in X . The (negative of the) rhs is called
the Artin conductor Art(X/S).

A kind of arithmetic Gauss-Bonnet: describe the change of Euler characteristic
between special and generic fibres.
Known cases:
- relative dimension 0 (classical: conductor discriminant formula in algebraic
number theory); relative dimension 1 (Bloch himself, 1987);
- arbitrary relative dimension, supposing that (Xk)red is a NCD (Kato-Saito, 2004)
- geometric case (X and S smooth over a perfect field, Saito 2018).
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Bloch’s conjecture II

Rmk. BCC implies Deligne-Milnor conjecture for isolated singularities (Deligne,
Orgogozo).

Theorem (Toën-V, 2018)
There is a categorical version [�X , �X ]cat

S
of Bloch’s number [�X , �X ]S such that

[�X , �X ]cat

S
= ‰¸(Xk̄

) ≠ ‰¸(XK̄
)

if the inertia acts with unipotent monodromy.

Rmks. 1) Unipotent monodromy action of inertia ∆ Swan conductor vanishes (i.e
we are in the tame case), so the BCC formula reads
[�X , �X ]S = ‰¸(Xk̄

) ≠ ‰¸(XK̄
) ∆ Theorem is a categorical analog of BCC.

2) In the geometric case the categorical Bloch’s number coincides with Bloch’s
number (∆ new proof of BCC for unipotent monodromy).
3) We think that [�X , �X ]cat

S
= [�X , �X ]S always (no unipotency needed). This

would give a proof of BCC for unipotent monodromy ∆ cases not covered by
Kato-Saito (e.g. isolated singularities in mixed characteristics).
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Proof of categorical BCC, I

Set-up: p : X æ S = Spec A as in statement of Bloch’s conductor
conjecture, residue field k, K := Frac(A), X0 special fiber. May further
suppose S strictly henselian and excellent (this is classical).
Steps of proof:

Consider the non-commutative space T = Sing(X0).
Consider B

+ := Endk¢Ak(k, k): it is an E2 algebra over A. Intuitively:
for composition and convolution, since B

+ is the groupoid algebra for
the nerve of Spec k æ S; alternatively, use Deligne conjecture and
B

+ ƒ HH
•(k/A) (Hochschild cohomology).

B
+ ƒ k[u], deg(u) = 2, as E1-algebras, but B

+ is not EŒ in the mixed
char case.
Define B := B

+[u≠1], an E2-algebra (equivalent to k[u, u
≠1] as

E1-algebras).
Observe that our T := Sing(X0) is a dg-category over B: this is a
refined version of 2-periodicity for T (2-periodicity … T is a
dg-category over A[u, u

≠1]).
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Proof of categorical BCC, II

Lemma (Künneth for Sing): For X and Y regular, flat/S,

Sing(X ◊S Y ) ƒ Sing(X0)o ¢B Sing(Y0)

in dgCat
A

(up to Morita, as usual),where
Sing(X ◊S Y ) := D

b

coh
(X ◊S Y )/Dperf(X ◊S Y ) is the absolute singularity

category of X ◊S Y . In this equivalence, for X = Y , the diagonal bimodule
Sing(X0) corresponds to the relative diagonal �X/S .

Deduce from the previous step (for X = Y ), that T is smooth&proper over B.

Lemma (Künneth for inertia-invariant vanishing cycles): For X and Y

regular, flat/S, inertia I acting unipotently (on both),

H(Sing(X ◊S Y ),Q¸) ƒ qú(‹X ⇥ ‹Y )I(—)

where ‹X := �X/S(Q¸) (vanishing cycles) and q : X0 ◊k Y0 æ S.

Deduce from the two Künneth lemmas, and from the Sing-theoretic
interpretation of I-invariant vanishing cycles ([BRTV], seen before), that T is
¸¢-admissible over B.
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Proof of categorical BCC, III

Now we know that T := Sing(X0) is smooth&proper and ¸¢
-admissible over B =∆

we are in a position to use our trace formula for dg-cats over B (for idT : T æ T )

Ch0([HH(T/B, id)]) = trH(B,Q¸)(H(idT ,Q¸)) (ú)

in H
0
(Sét ,H(HH(B/A),Q¸)). Use that H(B,Q¸) is commutative, the compatibility

between the comm and the non comm trace, and the computation

K0(H(B,Q¸)) ƒ Z, to deduce that (*) is actually an equality of (¸-adic) numbers.

Upshot :

Ch0([HH(T/B, id)]) = trH(B,Q¸)(H(idT ,Q¸)) œ Q¸

[�X , �X ]
cat

S := Ch0([HH(T/B, id)]) : categorical Bloch number (it is a number

because of the trace-formula ).

Now, an easy calculation (using just [BRTV] + classical fact that Euler char of

vanishing cycles is ≠‰¸(X
k̄
) + ‰¸(X

K̄
), since X/S is proper) yields on the r.h.s.

trH(B,Q¸)(H(id ,Q¸))) = ‰¸(X
k̄
) ≠ ‰¸(X

K̄
).

In particular, trH(B,Q¸)(H(id ,Q¸))) œ Z µ Q¸.

Conclude that

[�X , �X ]
cat

S = ‰¸(X
k̄
) ≠ ‰¸(X

K̄
) (i.e. categorical Bloch’s formula)

⇤
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Proof of categorical BCC, IV - comments

Comments on the proof (for unipotent monodromy):

(1) ¸¢-admissibility does not hold unless the action is unipotent (need (≠)hI

commutes with tensor products).

(2) The comparison [�X , �X ]cat

S
= [�X , �X ]S is done via twisted de Rham

complexes in the geometric case.
This is inspired by ideas of Kontsevich, Sabbah (complex case), and more
generally by Preygel. The mixed characteristic case of this comparison is
still open.

≥
Let’s see briefly a strategy for the general case of Bloch’s conjecture (i.e.
when monodromy action is not necessarily unipotent).
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General case (arbitrary monodromy)

The case of arbitrary monodromy.

Problem: if the inertia does not act with unipotent monodromy, then
T = Sing(X0) is no more ¸¢-admissible.
Idea: use Grothendieck unipotent monodromy theorem: ÷S

Õ æ S (totally) ramified
covering such that the inertia for XSÕ æ S

Õ acts unipotently.
Problem: the base change XSÕ is no more regular (hence its singularity category is
more complicated, and even the original statement of Bloch’s conductor conjecture
is not supposed to apply !).
Idea: Look at T = Sing(XSÕ) with the action of Sing(S Õ ◊S S

Õ) (with convolution
¢; this replaces the algebra B in this context). We think that T is saturated and
¸¢-admissible over Sing(S Õ ◊S S

Õ).
Rmk. Sing(S Õ ◊S S

Õ) “contains” the Swan/Artin character: Artin character:
G – g ‘æ length(H0(�ú

e
(�g )ú(OSÕ))) ≠ length(H1(�ú

e
(�g )ú(OSÕ))),

where �g : S
Õ æ S

Õ ◊S S
Õ is the graph of multiplication by g œ G (∆ �ú

e
(�g )ú(OSÕ)

= structure sheaf of the derived fixed point scheme (S Õ)g ), and moreover
{(�g )ú(OSÕ)}gœG generate Coh

b(S Õ ◊S S
Õ). More generally, Sing(XSÕ) as a module

over Sing(S Õ ◊S S
Õ) “contains” the Swan conductor.
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A new approach (in progress)

Problem in the previous approach. Hard to understand/work with (modules over) HH(B/A)

(recall B is E2 over A).

Alternative approach: use a suitable integration map

s
: K0(Sing(X ◊S X)) æ K0(Spec k) ƒ Z.

Let me explain the idea of this alternative approach in the easiest case of reldimX/S = 0, where

Bloch’s conjecture is the classical conductor-discriminant formula (Hasse-Artin).

Here S
Õ

:= X = Spec A
Õ

æ S = Spec A is a finite totally ramified extension of Henselian dvr’s,

with Galois group G(= Gal(÷Õ/÷)). And we want to produce an integration map

⁄
: K0(Sing(S

Õ
◊S S

Õ
)) æ Z

such that

for g œ G and �g : S
Õ

æ S
Õ

◊S S
Õ

its graph, if Eg := (�g )úOSÕ , then

s
[Eg ] = ar(g)

(Artin character of g);

geometry tells us that

q
gœG

[Eg ] = 0 in K0(Sing(S
Õ

◊S S
Õ
)).

This implies that ÿ

gœG

ar(g) = 0

which is (a way of expressing) Hasse-Artin conductor-discriminant formula.
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A new approach (in progress)

The integration map
s

is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where

HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;

HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)
The integration map

s
is defined as the composite

K0(Sing(S Õ ◊S S
Õ)) � // K0(HHst

SÕ/S
)

s Z/2

// Z

where
HHSÕ/S := (p1)úREndSÕ◊S SÕ(�úOSÕ) (Hochschild cohomology sheaf on S’):
it is an E2-algebra together with an E2-algebra map u : OSÕ æ HHSÕ/S ;
HHst

SÕ/S
:= Perf (HHSÕ/S) / Perf (HHSÕ/S)Perf on S

Õ via u

� := K0(„), where „(E ) := RHomSÕ◊S SÕ(�úOSÕ , E ) (use that „ sends
perfect complexes on S

Õ ◊S S
Õ to objects in Perf (HHSÕ/S)Perf on S

Õ via u).

⁄
Z/2

F := lengthSÕ(H0(F)) ≠ lengthSÕ(H1(F)).

This uses that Hú of HHst

SÕ/S
is 2-periodic (by HKR + S’/S is locally a

hypersurface), H0 is supported at the closed point, and that each Hi(F) is
coherent over H0(HHst

SÕ/S
), hence has finite length.



A new approach (in progress)

Now, recall Eg := (�g )úOSÕ .The fact that
s

[Eg ] = ar(g) is a computation:

use that RHomSÕ◊S SÕ(�úOSÕ , Eg ) ƒ RHomSÕ(�ú
g
�úOSÕ , OSÕ), compute �ú

g
�úOSÕ

(and use Matlis duality), and compare with the definition

ar(g) :=
;

≠length(�1

SÕ/S
) if g = e

length(OSÕ/(gfiÕ ≠ fiÕ)) if g ”= e

Finally, observe:

Lemma. There exists a s.e.s.

0 æ OSÕ◊S SÕ // ügEg
// N æ 0

where N has finite length.

Lemma ∆ [N] = 0 already in K0(Coh(S Õ ◊S S
Õ)); but [OSÕ◊S SÕ ] = 0 in

K0(Sing(S Õ ◊S S
Õ)), so Lemma ∆

q
g
[Eg ] = 0 in K0(Sing(S Õ ◊S S

Õ)).
– qed
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A new approach (in progress)

General case (idea):

for X/S of arbitrary relative dimension as in BCC (or even just X regular with X/S

locally a hypersurface) construct an integration map at the level of motives (i.e. in

SH(S)) ⁄

mot

: M‚
S (Sing(X ◊S X)) æ BU.

consider the composite

#mot : BU
� //M‚

S (Sing(X ◊S X))

s
mot // BU ,

here � is induced by the diagonal dg-functor A æ Sing(X ◊S X).

the ¸-adic realization of #mot is # : Q¸(—) æ Q¸(—) ∆ gives an ¸-adic number –.

naturality of ¸-adic realization plus definition of
s

mot
∆ – is Bloch’s number

[�X , �X ]S .

in the unipotent monodromy case, use trace formula to prove that the ¸-adic

realization of � (respectively, of
s

mot
) is given by the coevaluation (respectively, the

evaluation) ∆ BCC for unipotent monodromy. Should also work, more generally, in

the tame case.

Without hypothesis on the monodromy, compute – ¸-adically, and prove that it is

equal to TotDim(Vanishing cycles for X/S) © ≠Art(X/S) ∆ general BCC.
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Future directions

- Bloch’s conductor formula when X is not regular ? [coherent matrix
factorizations] : ongoing by Massimo Pippi (PhD student).

- Bloch’s conductor formula when X is a formal scheme (or a stack) ?
[vanishing cycles only depend on formal completion; rigid geometry]

- Bloch’s conductor formula when X is over a local base of dimension > 1 ?
: ongoing by Massimo Pippi (PhD student).

- vanishing cycles and Bloch’s conductor formula over “global” bases ?
[From ‰ to complexes: Beilinson adèles, sheafify Sing(X , f ) ?]

- Nicaise conjecture (volume of a smooth proper scheme Y over
K = Frac(A) via a trace formula; volume “counts” K -rational points of Y )

- Formulation of weight-monodromy conjecture in terms of the (nc) motive
Sing (Sing is “pure” over B ?).
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