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CONDENSED MATHEMATICS
OR, TRYING TO UNDERSTAND SHEAVES ON A POINT

PETER SCHOLZE

Joint with Dustin Clausen, work in progress.

Question: How do we do algebra (i.e. brave new algebra) when our rings/modules/groups
have a topology? Some first examples, Z,, R, Banach spaces, GL,,(Q,), or GL,(R).
Better, how do we do such a thing generally instead of ad hoc?

Problems:

e Topological abelian groups is no longer an abelian category. Illustrated, con-
sider (Z,, discrete) — (Z,, p-adic). It’s clear a bijection, but it shouldn’t be
an isomorphism. So what’s its kernel? What’s its cokernel? We’ll have an
answer before the end.

e Continuous group cohomology does not admit long exact sequences

e There is no theory of quasicoherent sheaves on complex/p-adic analytic spaces.
If we have f: Spa B — Spa A (Spa = analytic spectrum), and M a topologi-
cal A-module, we want to base change to M® 4B, but what’s the completed
tensor product in a general setting?

We need a very algebraic way to both keep track of the “topologies” and define
“completion”.

Recall from Bhatt-Scholze that there’s a pro-étale of any scheme X, denoted X;o4t.
The design criterion for this site of that there exists a sheaf of abstract rings Q,
on Xppeet such that sheaf cohomoloy H*(Xpet, Q) is the right thing, e.g. f-adic

cohomology. The points U € X ¢ are limits of étale maps U = lim(U; %X ) with,
say, affine transition maps U; — U; for easier computation.

Warning: for k algebraically closed, the sheaves on (Speck)poct aren’t just sets!
This site actually has quite a lot of objects, which is a ‘feature rather than a bug’

Notes by Ian Coley.
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Definition 1. Consider a set (= *pet) With objects profinite sets S (aka totally
disconnected compact Hausdorff spaces), maps continuous maps, and covering fami-
lies finite disjointly surjective families of maps. A condensed set is a sheaf of sets on
that site. Specifically, it consists of the data T': {profinite sets}°® — {sets} with an
‘underling set’” T'(x) satisfying

(1) T(S; U S5) = T(S1) x T(S,)
(2) If S” — S is a map, then T'(S) = eq (T(S") =T(S" xs 5))

Similarly, one can do condensed whatevers = a sheaf of whatevers on p.pe. So
for any (oo-)category C, we get a category Cond(C) of C-values (hypercomplete, due
to technical reasons) sheaves on et

Example 2. Let T be a topological space. It defines a condensed set T': S +—
Map(S,T') the set of continuous functions, where S the profinite set has the inverse
limit topology.

Proposition 3. On compactly generated topological spaces, T+ T is fully faithful

So as a sub-example, consider (Z,, discrete) — (Z,, p-adic). As condensed abelian

groups, this map is injective, but has a really large cokernel ) with Q(x) = 0. On
S-valued points, we have a short exact sequence

0 — {locally constant S — Z,} — {continuous S — Z,} — Q(S) — 0

and since not every continuous function is locally constant, Q(S) has some substance.

Different models of *pyo¢t
There is a bigger version and a smaller version which give the same sheaf theory:

Bigger: use the site of all compact Hausdorff spaces with covers = surjections.
We have the same sheaf because every compact Hausdorff is covered by a totally
disconnected one. Actually, it’s covered in a pretty natural way: consider a com-
pact Hausdorff space S as a discrete set. Then the Stone-Cech compactification
B(S, discrete) is totally disconnected and has a natural surjection onto S induced by

(S, discrete) — S.

Smaller: use only the extremely disconnected compact Hausdorff spaces (Gleason,

60’s).
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Definition 4. For S compact Hausdorff, S is extremely disconnected if any surjec-
tion S" — S from a compact Hausdorff splits.

So these are something like the “projective objects” in compact Hausdorff spaces.
Moreover, there are “enough projectives”: consider any totally disconnected S =
£Sg, for Sy discrete. Then for any map S — S, we can look at Sy C S and construct
a continuous map Sy — S’ easily because Sy is discrete. It extends unique to a map
BSy =8 — 5’ and because of all the naturality involved we can show that this is a
section of the original map.

Advantages of the smaller construction:

o T'— T(S) for S extremely disconnected commutes with all limits and con-
nected colimits. In particular, there are no higher cohomology groups.
e Assuch, we no longer have the ‘sheaf condition’ so condensed sets are now just

the data T': {extr. disc.}°P — {sets} such that T'(S; U Ss) = T(S1) x T'(Ss).

Key question: Does the passage from topological X to condensed X preserve all
relevant information?

Example 5. Let S be compact Hausdorff. Then the cohomology groups H'(S,Z)
are important, which we can define always as Cech cohomology HY . (S,Z) and (in
good cases) singular cohomology. Note that if S is profinite, singular cohomology
does not work so well.

If we treat S as a condensed set, then it’s a sheaf on the étale site so we can
compute H' (S, Z) interpreted as sheaf cohomology. Take a hypercover S, — S by
extremely disconnected sets, and form

0—I(Sy,Z2) = T(S,2) — ---
where we interpret I'(Sy, Z) = Map(Sp, Z).

Theorem 6 (Dyckhoff 75). These constructions canonically agree.

As a particular case, for any set I we have H: (I],R/Z,Z) = A" (D, Z) where
Z is taken in degree 1. This computation is a fair bit more unpleasant without this
framework.

Proposition 7. We have the following computations, where RHom is taken in the
category Cond(Ab) unless noted:

e RHom(R,Z) =0
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e RHom(R,R) = R[0] (reminder: this is taken over Z)
e RHom([[;R/Z,Z) = @; Z][—-1]
e RHom(][,;R,Z) = RHom(][; R, RHomg (R, Z)) = 0 because
RHomg (R, Z) = 0.
e RHom([[,Z,Z) =P, Z
e D(locally compact abelian groups) embeds fully faithfully in D?(Cond(Ab)).

o]RHomEZp, R) =0
(
(

We know now that Cond(Ab) is an abelian category, complete and cocomplete,
and compactly generated by Z[extremely disconnected] which are projective. Now,
we can also have a condensed group G acting on a derived condensed abelian group
C € D(Cond(Ab)), e.g. the Morava stabilizer group acting on Morava E-theory.

Okay, so we can do H'(G,C') with structure now in Cond(Ab) which agrees with
continuous group cohomology ... usually. But even if it doesn’t agree, we get a long
exact sequence.

Completion? We want to make sense of Z, ®z Z, or Z, @y Z[[t]].

Definition 8. (1) The free complete condensed abelian group on S a condensed
set is constructed as follows: as S is profinite, write S = lim .S;, then define
Z[S)" := lim Z[S;], which receives a map from Z[S].

(2) A condensed abelian group M is complete if for all condensed sets S, every
map S — M always admits a unique factorisation through Z[S]".

(3) C € D(Cond(Ab)) is complete if for all condensed sets S, RI'(S,C) &
RI'(Z[S]", C) is an isomorphism.

Theorem 9. (1) C € D(Cond(Ab)) is complete if and only if all H*(C) are
complete in Cond(Ab).
(2) Complete condensed abelian groups is an abelian subcategory of Cond(Ab),
closed under limits and colimits.
(3) The same is true for complete (derived) chain complexes in all chain com-
plexes D(Cond(ADb)).
(4) There exists a completion functor and @y

Example 10. The completed tensor product works as it should: Z,®7%, = Z, when
p = { and is 0 otherwise; Z,07Z[[t]] = Z,[[t]].
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Final remark: hopefully we can do something like algebraic geometry in this con-
densed setup, e.g. to a scheme X we associate complete condensed quasicoherent
sheaves on X.



