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BÖKSTEDT PERIODICITY AND BOTT PERIODICITY

DMITRY KALEDIN

Joint with A. Fonarev.

We want to present a new proof of a known theorem, namely the computation
of THH˚pFpq. Let A P DpSq be an E1-ring spectrum, and we want to take M and
A-bimodule for coe�cients.

Definition 1. THHpA,Mq is defined as the homotopy colimit of the following dia-
gram:

M A ^ Moo
oo

A ^ A ^ M ¨ ¨ ¨oo
oo

oo

where the maps are given by the action of A on M .

Specifically, we want to work over k “ Fp or another perfect field of characteristic
p. We have an adjunction between Dpkq and DpSq which gives us a symmetric lax
monoidal comonad Q on Dpkq. In particular, if A{k is associative and unital and M

an A-bimodule, then A ^ M “ QpAq bk M . Then we can recognise THHpA,Mq “
HH˚pQpAq,Mq, where this latter is sometimes called Maclane homology of A with
coe�cients in M HM˚pA,Mq. Eilenberg-Maclane knew about the comonad Q in
the ’50s already.

Uses:

(1) Maclane cohomology also exists, which gives HM˚pk, kq a Hopf algebra struc-
ture.

(2) Qpkq is the dual Steenrod algebra, though Q is not k-linear, and there exists
some spectra sequence converging to it. In particular, its’ something of the
form kr�, Ai, Bis with |sigma| “ 2, |Ai| “ 2pi ´ 1, |Bi| “ 2pi for i • 1.

If p ° 2, that spectral sequence is miraculously highly degenerate, and only � lasts
to the E8 page, so that THHpkq “ kr�s (Bökstedt).

Notes by Ian Coley.
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Observe: that � will always survive to the end. Assume that � is not nilpo-
tent. Then “we are done”, using another spectra sequence kr", Ci, Dis converging
to Maclane cohomology. Because of the Hopf algebra structure, we know that
x�p

, "
py “ 0. becuase � isn’t nilpotent, "p “ 0. Then we conclude BC1 “ "

p so
BA1 ‰ 0 and B1 survives. Then go by induction on the index of A,B.

Some reasoning along these lines allows us to do the computation.

Anyway, here’s the idea: we need to prove that � is not nilpotent by constructing
some sort of multiplicative map out of THH. There is a general method by which we
can do this:

Stabilization: Let I be a pointed small category with finite coproducts, say
I “ �˚ the category of finite pointed sets. Let HopIq “ HopFunpI,Top˚qq. Since I

is pointed, it makes sense to refer to additive functors F : I Ñ Top˚ as those that
sends coproducts to products.

If X P HopIq is (the image of) an additive functor, then ⇡0Xp˚q is a commutative
monoid. We call it Xp˚q grouplike if it happens to be a group.

Definition 2. An additive functor F P HopIq is stable if for all i P I, F restricted
to the collection t≤

iu is grouplike. Let HostpIq Ä HopIq be the full subcategory of
stable functors.

Theorem 3. There is a left adjoint to the inclusion of stable functors, i.e. there is
a localization stab: HopIq Ñ HostpIq. Moreover, if I is monoidal, then for F : I Ñ
Top˚ lax monoidal, stabF is still lax monoidal.

Trace functors: If we also have isomorphisms ⌧i,i1 : F pi b i
1q Ñ F pi1 b iq, then

stabF also will

Finally, we can move ourselves from Top˚ to k-cdgas and everything still works.
So now let I be the category of finite dimensional k-vector spaces.

Example 4. Examples of functors and their stabilizations.

(1) T pMq “ M
bp, then stabT “ 0.

(2) CpMq “ pMbpq⌧ , where ⌧ is the cyclic permutation on p elements. Then
stabCpMq “ ⌧

§0 qC˚pCp,M
bpq, the 0-truncation of the Tate cohomology com-

plex. We can see that qH ipCp,M
bpq – M for all i . This functor is lax

monoidal and comes with a trace functor on pM b Nqbp which twists M by
⌧ but does not twist N . So something like that passes to the stabilization.
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Now consider  : M Ñ CpMq which sends m to m
bp. This functor is super not

additive. This gives us a map M Ñ stabCpMq which is not k-linear.

Lemma 5. The composition

M
stab Ñ ⌧

§0 qC˚pCp,M
bpq Ñ pMbpq⌧ r1s

is not zero (as it would be if it were k-linear), and in fact is the same as the Bockstein
� : M Ñ M r1s post composed with M r1s Ñ pMbpq⌧ r1s.

THH also appears as a stabilization of something, but of what? Let C P Cat be
a small category, and let M : Cop ˆ C Ñ Sets be a functor. Then define the cyclic
nerve

N
cyc
‚ pC,Mq P sSet

with k-simplices c0 Ñ c1 Ñ ¨ ¨ ¨ Ñ ck with an element m P Mpck, c0q to “loop it”. If
we postcompose with geometric realization, we get something we can stabilize.

For pA,Mq over k, let P pAq be the category of finitely generated projective
A-modules. Then let P pMq : P pAqop ˆ P pAq Ñ tk-vector spacesu be given by
P ˆ P

1 fiÑ HomkpM bA P, P
1q.

Theorem 6. THHpA,Mq is the stabilization of the cyclic nerve N cyc
‚ pP pAq, P pMqq

We have two additional structures:

(1) For any M , N cyc
‚ pP pAq, P p´qq is lax monoidal.

(2) There’s a trace functor structure that’s more obvious ifM is finitely generated
projective as a left or right A-module. The nextend by taking filtered colimits
of such.

Now, consider ' : N cyc
‚ pP pkq, P pMqq Ñ pMbpq0 the constant simplicial set. The

zero simplices on the left are P P P pkq with an endomorphism a : P Ñ P . We send
this to the trace of ap in M

bp, and it lands in pMbpq⌧ the ⌧ -invariant part.

Now we let M “ k and stabilize. We can look at stab' and get a better idea of
the structure of the (a priori) computation that the lefthand side is THHpk, kq.


