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Riemann surfaces

Consider a compact surface M with genus g.
A conformal structure on M is given by a smooth Riemannian
metric fixed up to multiplication by a positive C∞ function.
A complex structure on M is given by an automorphism J of the
tangent bundle TM with J2 = − Id.
In dimension 2, there is a one-to-one correspondence between
the above two structures.

A Riemann surface is a surface with such a structure.
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Moduli spaces of Riemann surfaces

The moduli spaceMg is the set of all conformal (complex) structures
on a genus g surface M up to diffeomorphism

The spaceMg is a complex orbifold of dimension 3g − 3 (when
g ≥ 2)
In each conformal class, there is a unique metric with constant
curvature and finite area (Uniformization theorem)
The curvature depends on the arithmetic genus (Gauss–Bonnet)
The metric is hyperbolic when genus 2g − 2 > 0
Each point onMg represents a diffeomorphism class of
hyperbolic metrics on the surface
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The pointed moduli space

The pointed moduli space is the set of all conformal structures on a
genus g surface M with additional n ordered distinct marked points
Mg,n is a complex orbifold with dimension 3g − 3 + n
FibrationMg,1 →Mg

In fact we have fibrationsMg,n →Mg,n−1 by dropping the last
marked point
For the case 2g + n > 2, on each fiber there is a hyperbolic metric
The metric in the pointed case has cusps at each marked points
The fiber metrics vary smoothly
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Noncompactness: examples

The moduli spaceMg,n is not compact for any (g,n).

Example: M1,1

The moduli space of a pointed torus is the modular surface
M1,1 = H/SL(2,Z).

Figure: Moduli spaceM1,1
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Noncompactness: example
The moduli spaceMg,n is not compact for any (g,n).

Example: M0,n

When n = 3,M0,3 = {pt}. When n = 4,M0,4 = CP1 \ {0,1,∞}.
For n ≥ 5,

M0,n = (CP1 \ {0,1,∞})n−3 \ 4fat

∞

1

0

Figure: Moduli spaceM0,4
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Noncompactness

Figure: Moduli spaceM1,1

∞

1

0

Figure: Moduli spaceM0,4

The noncompactness comes from two kinds of degenerations:
Shrinking geodesics
Separation of “colliding” marked points

The compactification ofMg,n is denoted asMg,n.
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Degeneration I: pinching geodesics

Take a nontrivial geodesic cycle in M, and let its length go to zero.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point
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This process can be indexed by a complex parameter t ∈ D.

t ∈ D0

Figure: Degenerating surfaces, indexed by a parameter t
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Local geometry: hyperbolic cylinder

Locally the geometry near the shrinking cycle is described by the
normal crossing model:

(z,w) ∈ C2, zw = t

t = 1/2 t = 1/4 t = 0

{
√
|t| ≤ |z| ≤ 1} {

√
|t| ≤ |w| ≤ 1} {|z| ≤ 1, w = 0} {|w| ≤ 1, z = 0}

Figure: Local geometry of zw = t , with coordinate patch z and w
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Nodal crossing divisors

The previous picture might be misleading: the singular surface has a
transversal crossing

t=0

Figure: Transversal crossing of universal curve
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Divisors inMg

The “boundary”Mg \Mg is a union of normally intersecting,
self-intersecting divisors
Pinching one geodesic gives a pair of nodal points
If the fiber has k pairs of nodal points, it lies on the intersection of
k local divisors, i.e. locally a k-fold intersection ofMg−1,2

The arithmetic genus G = 2g + n stays the same
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Degeneration II: pointed moduli spaceMg,n

Another degeneracy: marked points may collide
Example ofM0,4 of CP1 with 4 points: {0,1,∞, t} vs {0,1/t ,∞,1}

0

1

t
∞

x3 x4

x2

x1

Figure: Degeneration of CP1 with 4
points

∞

1

0

x1 x4 x2 x3

x2 x4 x1 x3

x3 x4 x2 x1

Figure: Compactified moduli space
M0,4
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Compactification ofMg,n

The compactification separates the “colliding” points by adding
nodal spheres
A divisor inMg,n is represented by a collection of marked
surfaces connected by nodal crossings
Nodal crossing: a pair of cusp points
Singular fibration ofMg,n+1 overMg,n by dropping the last point
and possibly pinching unstable components
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Nodal curves

Picture source: http://www.partyballoonanimals.co.uk/wp-content/themes/alexandria-child/images/balloon-animal.png
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Deligne–Mumford–Knudsen compactification
The compactificationMg was introduced by Deligne and Mumford,
laterMg,n by Knudsen.

M3,5

Figure: Fibration over the compactified moduli spaceM3,5
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The tangent and cotangent spaces ofMg,n

The tangent space ofMg is identified with harmonic Beltrami
differentials (cf. quasiconformal maps)
TMg can also be identified with transverse traceless tensors
TMg = {udx2 − 2vdxdy − udy2|u + iv is holomorphic }
The cotangent space ofMg identified with the holomorphic
quadratic differentials

T ∗Mg = {µ = ζ(z)dz2}

T ∗Mg,n: meromorphic quadratic differentials, at most simple
poles at the punctures
T ∗Mg,n: at most double poles at the nodes, with matching
residues
Dimension counting: Riemann-Roch
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Weil–Petersson metric

There is a natural metric onMg,n called the Weil–Petersson metric.
Using this identification, the Weil-Petersson (co-)metric is defined
by

GWP(ζ1, ζ2) =

∫

fib

ζ1ζ2

µH
, ζ1, ζ2 ∈ T ∗pMg,n, p ∈Mg,n

where µH is the area form of the fiber hyperbolic metric and the
integrand itself may be identified as a fiber area form.
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Understanding the singular geometry

One would like to understand:

Question:
Can we analytically describe the singular fibrationMg,n →Mg,n−1?

How does the hyperbolic metric behave when approaching the
divisors?
What does the moduli space look like near the divisors, more
specifically, the behavior of the Weil-Petersson metric?
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From moduli space to the plumbing model

M3,5

Figure: Compactified moduli space

−→ M4

Z2

ψ

t ∈ D1/2

q

p

Figure: Lefschetz fibration

−→
t = 1/2 t = 1/4 t = 0

{
√
|t| ≤ |z| ≤ 1} {

√
|t| ≤ |w| ≤ 1} {|z| ≤ 1, w = 0} {|w| ≤ 1, z = 0}

Figure: Local plumbing model
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Local model

Near the degenerated fiber, there is a model metric.

Plumbing metric on each fiber

g(t)
pl =

(
π log |z|
log |t | csc

π log |z|
log |t |

)2

g0,

g0 =

( |dz|
|z| log |z|

)2

g(t)
pl → g0 as t → 0.

Symmetric with the change of w = t/z.
Fiber curvature = −1.
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Curvature equation on M

Curvature equation for conformal factor: if g = e2f g0, then

R(g)e2f = ∆g0 f + R(g0),

which in our case is

∆gpl f + R(gpl) = −e2f .

The linearization of the curvature operator:

(∆gpl + 2)f = −1− R(gpl) + O(f 2).
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Results on degenerating hyperbolic metric

Theorem(Melrose–Z, 2015)

There exists a resolution of the fibration M̂ → Ẑ such that
The fiber metric is conformal to a smooth metric on LT M̂ a
rescaling of the fiber tangent bundle;
The conformal factor is log-smooth.

Remark: a resolution essentially introduces more smooth variables, in
this case, angular variables, log |z|, log |w |, log |t |, and log |z|/ log /|w |.

The metric has the following expansion:

gt = gpl


∑

k≥2

ak (− 1
log |t |)

k


 .
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Resolved space M̂
We consider the following glued space of M̂ = (M \ P) ∪ Pmr:

II
I

I

Figure: Final resolved space M̂
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Main steps of proof

Resolve the space by introducing more smooth variables.
Near the singular fiber we glue the plumbing metric with nearby
part to get a model metric gpl . This is a smooth family of Hermitian
metrics on the resolved space. It has has constant curvature −1
near the nodal parts and error to second order at the base fiber.
The inverse family (∆ + 2)−1 on the fibers for this metric is shown
to be uniformly bounded on appropriate spaces.
The prescribed curvature equation for the conformal factor is
solved to infinite order at the base fiber.
The error term is removed using the Implicit Function Theorem to
show that the conformal factor to a hyperbolic family exists and is
log-smooth.
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Asymptotics of the Weil-Petersson metric
We apply a similar technique to obtain the expansion for the
Weil–Petersson metric on the compactified moduli spaceMg,n.

Theorem(Melrose–Z, 2016)
For any g,n with 2g − 2 + n > 0, there exists a resolution of the moduli
space fibration M̂g,n+1 → M̂g,n, such that the Weil–Petersson metric
lifts to be a log-smooth metric on the rescaled cotangent bundle of
M̂g,n.

The metric is of the form

gWP =
k∑

i=1

π

(
ds2

i
si

+ s3
i dθ2

i

)
+ g′WP

si = −1/ log |ti | ∼ length of the shortest geodesic circle;
g′WP when restricted to the corner is the Weil-Petersson metric on
the k -fold intersection of divisors, and g′WP(∂sj , ·) vanishes at
sj = 0.
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Corollary: Expansion of shortest geodesics

Corollary
The length of the shortest geodesic under degeneration is a
polyhomogeneous function of s.

In the plumbing model, the shortest geodesic is given by the circle
in the middle
lpl(s) = 2π2s
Rotational symmetry of the actual hyperbolic metric (up to infinite
order)
lhp(s) = 2π2s + s2e(s) with e(s) log-smooth.
This implies the leading order of the expansion of gWP under
Fenchel-Nielsen coordinates.
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The Ricci metric

The Ricci curvature of the Weil-Petersson metric is itself a Kähler
metric on the moduli space
The quasi-isometry class by [Trapani, 1992]; the leading
asymptotics at a divisor [Liu–Sun–Yau, 2004]
Kähler potential given by − log det(gWP)

We obtain a “multi-cusp” metric

gRi =
3
4

k∑

j=1

(
ds2

j

s2
j

+ s2
j dθ2

i

)
+ h

where h is log-smooth and restricts to the exceptional divisor to be
the induced Ricci metric.
gRi is complete: spectrum of the Ricci metric
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The full curvature tensor of gWP

The Kähler potential of gWP is of the form (near a single divisor):

φ(z, z̄) + s + s3ψ(z, z̄, s)

Implication of the decay of the cross terms
(

s3(1 + a′s2) s4b′

s4b′ h′

)

matches the choice of geodesic coordinates [Ahlfors, 1961]
Full curvature tensors are computed
Rss̄ss̄ = O(s−1), Rss̄zz̄ = O(s2), Rzz̄zz̄ = O(1)
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Thank you for your attention!
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