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Boundary degeneration of Riemann moduli spaces
and Weil-Petersson metrics

Xuwen Zhu (MSRI / UC Berkeley)

MSRI Connections for Women:
Holomorphic Differentials in Mathematics and Physics

Joint with Richard Melrose
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Outline

@ Moduli spaces of Riemann surfaces
e Degeneration of hyperbolic metrics
© Analysis of the singular metrics

° Application: asymptotics of Weil-Petersson metrics
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€
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Riemann surfaces

Consider a compact surface M with genus g.

@ A conformal structure on M is given by a smooth Riemannian
metric fixed up to multiplication by a positive C>° function.

@ A complex structure on M is given by an automorphism J of the
tangent bundle TM with J? = — Id.

@ In dimension 2, there is a one-to-one correspondence between
the above two structures.

A Riemann surface is a surface with such a structure.
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Moduli spaces of Riemann surfaces

The moduli space My is the set of all conformal (complex) structures
on a genus g surface M up to diffeomorphism

@ The space Mg is a complex orbifold of dimension 3g — 3 (when
9=2)

@ In each conformal class, there is a unique metric with constant
curvature and finite area (Uniformization theorem)

@ The curvature depends on the arithmetic genus (Gauss—Bonnet)
@ The metric is hyperbolic when genus 2g — 2 > 0

@ Each point on Mg represents a diffeomorphism class of
hyperbolic metrics on the surface
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The pointed moduli space

The pointed moduli space is the set of all conformal structures on a
genus g surface M with additional n ordered distinct marked points

@ My nis a complex orbifold with dimension 3g — 3 + n
@ Fibration Mg — My

@ In fact we have fibrations Mg, — Mg ,_1 by dropping the last
marked point

@ For the case 2g + n > 2, on each fiber there is a hyperbolic metric
@ The metric in the pointed case has cusps at each marked points
@ The fiber metrics vary smoothly
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Noncompactness: examples

The moduli space Mg , is not compact for any (g, n).

Example: M; 1

The moduli space of a pointed torus is the modular surface
My =H/SL(2,7Z).

Figure: Moduli space Mj 1
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Noncompactness: example
The moduli space My , is not compact for any (g, n).

Example: Mo,

When n = 3, Mg 3 = {pt}. When n =4, Mo 4 = CP'\ {0,1, cc}.
For n > 5,

Mon = (CP'\ {0,1,00})" 3\ Agy

o

Figure: Moduli space Mg 4
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Noncompactness

Figure: Moduli space M 4 . )
Figure: Moduli space Mg 4

The noncompactness comes from two kinds of degenerations:
@ Shrinking geodesics
@ Separation of “colliding” marked points

The compactification of Mg p is denoted as Mg’n.
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Degeneration I: pinching geodesics

Take a nontrivial geodesic cycle in M, and let its length go to zero.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point
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This process can be indexed by a complex parameter t € D.

teD

Figure: Degenerating surfaces, indexed by a parameter ¢
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Local geometry: hyperbolic cylinder

Locally the geometry near the shrinking cycle is described by the
normal crossing model:

(z,w)eC? zw=t

(<l <1} (Vi< ol <1} (/< Lw=0} {w[<12=0}
t=1/2 t=1/4

Figure: Local geometry of zw = t, with coordinate patch z and w
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Nodal crossing divisors

The previous picture might be misleading: the singular surface has a

transversal crossing

t=0

Figure: Transversal crossing of universal curve
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Divisors in M

@ The “boundary” Mg\ My is a union of normally intersecting,
self-intersecting divisors

@ Pinching one geodesic gives a pair of nodal points

@ If the fiber has k pairs of nodal points, it lies on the intersection of
k local divisors, i.e. locally a k-fold intersection of Mg_1 o

@ The arithmetic genus G = 2g + n stays the same
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Degeneration II: pointed moduli space Mg,

@ Another degeneracy: marked points may collide
@ Example of Mg 4 of CP' with 4 points: {0, 1, 0o, t} vs {0,1/t,00,1}

Figure: Degeneration of CP' with 4 Figure: Compactified moduli space
points Mo
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Compactification of Mgy,

@ The compactification separates the “colliding” points by adding
nodal spheres

@ Adivisor in Mg, is represented by a collection of marked
surfaces connected by nodal crossings

@ Nodal crossing: a pair of cusp points

@ Singular fibration of Mg .1 over Mg , by dropping the last point
and possibly pinching unstable components
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Nodal curves

Picture source: http://www.partyballoonanimals.co.uk/wp-content/themes/alexandria-child/images/balloon-animal.png
wen Zhu (MSRI / UC Berkeley)
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Deligne—-Mumford—Knudsen compactification
The compactification Mgy was introduced by Deligne and Mumford,
later Mg, by Knudsen.

4

Figure: Fibration over the compactified moduli space M3 s
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The tangent and cotangent spaces of Mg,

@ The tangent space of My is identified with harmonic Beltrami
differentials (cf. quasiconformal maps)

@ T Mg can also be identified with transverse traceless tensors

@ TMg = {udx® — 2vdxdy — udy?|u + iv is holomorphic }

@ The cotangent space of M identified with the holomorphic
quadratic differentials

T Mg = {u = ((2)dz?)

@ T*Mgy n: meromorphic quadratic differentials, at most simple
poles at the punctures

@ T*Mygn: at most double poles at the nodes, with matching
residues

@ Dimension counting: Riemann-Roch
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Weil-Petersson metric

There is a natural metric on Mg , called the Weil-Petersson metric.

@ Using this identification, the Weil-Petersson (co-)metric is defined
by -
_ [ G .
GWP(C17€2) - - C17 C2 € Tng,na pe Mg,n
fib IH

where uy is the area form of the fiber hyperbolic metric and the
integrand itself may be identified as a fiber area form.
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Understanding the singular geometry

One would like to understand:

Question:

Can we analytically describe the singular fibration Mg, — Mg p_1?

@ How does the hyperbolic metric behave when approaching the
divisors?

@ What does the moduli space look like near the divisors, more
specifically, the behavior of the Weil-Petersson metric?
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From moduli space to the plumbing model

DY

Figure: Compactified moduli space Figure: Lefschetz fibration

wm<u<1} (i< el < 1} (/< Lw=0} {lul<1:=0}
t71/2 t= 1/4

Figure: Local plumbing model
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Local model

Near the degenerated fiber, there is a model metric.

Plumbing metric on each fiber

( _ (7loglz| . 7log|z 2
s log || log 1| ’

3 ldz| \?
9=\ [z]log 7]
° gg) —~goast— 0.

@ Symmetric with the change of w = t/z.
@ Fiber curvature = —1.
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Curvature equation on M

Curvature equation for conformal factor: if g = €/ go, then
R(9)€”" = Dg,f + R(g),
which in our case is
Ag,f+ R(gp) = —€*.

The linearization of the curvature operator:

(Bgy +2)f = —1 — R(gp) + O(f?).
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Results on degenerating hyperbolic metric

Theorem(Melrose—Z, 2015)

There exists a resolution of the fibration M — Z such that

@ The fiber metric is conformal to a smooth metric on L TM a
rescaling of the fiber tangent bundle;

@ The conformal factor is log-smooth.

Remark: a resolution essentially introduces more smooth variables, in
this case, angular variables, log |z|, log |w|, log ||, and log |z|/ log /|w]|.

The metric has the following expansion:

k>2
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Resolved space M ~
We consider the following glued space of M = (M \ P) U Pny:

Figure: Final resolved space M
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Main steps of proof

@ Resolve the space by introducing more smooth variables.

@ Near the singular fiber we glue the plumbing metric with nearby
part to get a model metric gy This is a smooth family of Hermitian
metrics on the resolved space. It has has constant curvature —1
near the nodal parts and error to second order at the base fiber.
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Main steps of proof

@ Resolve the space by introducing more smooth variables.

@ Near the singular fiber we glue the plumbing metric with nearby
part to get a model metric gy This is a smooth family of Hermitian
metrics on the resolved space. It has has constant curvature —1
near the nodal parts and error to second order at the base fiber.

@ The inverse family (A 4 2)~' on the fibers for this metric is shown
to be uniformly bounded on appropriate spaces.
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Main steps of proof

@ Resolve the space by introducing more smooth variables.

@ Near the singular fiber we glue the plumbing metric with nearby
part to get a model metric gy This is a smooth family of Hermitian
metrics on the resolved space. It has has constant curvature —1
near the nodal parts and error to second order at the base fiber.

@ The inverse family (A 4 2)~' on the fibers for this metric is shown
to be uniformly bounded on appropriate spaces.

@ The prescribed curvature equation for the conformal factor is
solved to infinite order at the base fiber.

@ The error term is removed using the Implicit Function Theorem to
show that the conformal factor to a hyperbolic family exists and is
log-smooth.
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Asymptotics of the Weil-Petersson metric
We apply a similar technique to obtain the expansion for the
Weil-Petersson metric on the compactified moduli space Mg .

Theorem(Melrose—Z, 2016)

For any g, n with 2g — 2 + n > 0, there exists a resolution of the moduli
space fibration Mg 1 — Mg n, such that the Weil-Petersson metric
lifts to be a log-smooth metric on the rescaled cotangent bundle of
./\A/tg,n-

The metric is of the form
9wp = ZW ( + S3d92> + Jwe

@ s; = —1/log |t;| ~ length of the shortest geodesic circle;

@ g),p When restricted to the corner is the Weil-Petersson metric on
the k-fold intersection of divisors, and gj,(9s;, -) vanishes at
Sj = 0.
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Corollary: Expansion of shortest geodesics

The length of the shortest geodesic under degeneration is a
polyhomogeneous function of s.

@ In the plumbing model, the shortest geodesic is given by the circle
in the middle

@ Iy(s) =2n2s
@ Rotational symmetry of the actual hyperbolic metric (up to infinite
order)

® Iyp(s) = 27%s + s2e(s) with e(s) log-smooth.
@ This implies the leading order of the expansion of gype under
Fenchel-Nielsen coordinates.
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The Ricci metric

@ The Ricci curvature of the Weil-Petersson metric is itself a Kéhler
metric on the moduli space

@ The quasi-isometry class by [Trapani, 1992]; the leading
asymptotics at a divisor [Liu—Sun—Yau, 2004]

@ Kahler potential given by — log det(gwp)
@ We obtain a “multi-cusp” metric

k
Ori = Z(-I—S d92>+h

where h is log-smooth and restricts to the exceptional divisor to be
the induced Ricci metric.

@ gpi is complete: spectrum of the Ricci metric
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The full curvature tensor of gyp

@ The Kahler potential of gyp is of the form (near a single divisor):

$(2,2) + s+ 5%(2,2,3)
@ Implication of the decay of the cross terms

s3(1+ds?) s*b
s*p H

matches the choice of geodesic coordinates [Ahlfors, 1961]
@ Full curvature tensors are computed
o Rsésé = 0(3_1)a Rsézz = 0(52)7 Rzz2z = 0(1)
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Xuwen Zhu (MSRI / UC Berkeley)

Thank you for your attention!
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	Notetaker-Checklist_NEW[4678] 1.pdf
	Zhu Board Notes.pdf
	20190815_MSRI[10077].pdf
	Moduli spaces of Riemann surfaces
	Degeneration of hyperbolic metrics
	Analysis of the singular metrics
	Application: asymptotics of Weil–Petersson metrics




