Kontsevich-Soibelman wall-crossing formula and a Riemann-Hilbert problem
Connections for Women: Holomorphic Differentials in Mathematics and Physics August 15, 2019 - August 16, 2019
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
Riemann-Hilbert problem
Donaldson-Thomas theory and BPS numbers
07-Barbieri
The goal of this talk is to present the wall-crossing formula (WCF) introduced by Kontsevich and Soibelman and a class of Riemann-Hilbert problems naturally associated. The WCF describes a special behaviour of some counting invariants depending on a parameter space in a piece-wise constant way. I will recall how this formula appears with an explicit example of a moduli space of quadratic differentials and I will present the solution of a simple instance of the Riemann-Hilbert problem.
07-Barbieri
H.264 Video | 894_27296_7864_07-Barbieri.mp4 |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.