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Volumes of principal strata of quadratic differentials
and intersection numbers

Elise Goujard — University of Bordeaux
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Flat surfaces

Translation surfaces

Flat metric
Conical angles (d + 1) - 27

yar i
N
T '7 Riemann surface

with a holomorphic 1-form
(Abelian differential)
zeros of degree d

Gauss-Bonnet / Euler-Poincaré:

d di=2g-2
i
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Flat surfaces

Moduli space of translation surfaces

Hg = {translation surfaces of genus g} /cut and paste = |_| 7(d)
H(Q) = H(d1 , o, ..., dn) dF2g—2
= {surfaces in H4 with conical angles (d; + 1)2r}

The sides of the polygon representing S, viewed as complex numbers
(relative periods of the corresponding holomorphic 1-form) provide local
coordinates for the stratum #(d) around S.

>

o S
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Flat surfaces

Half-translation surfaces

Flat metric
— Conical angles (k +2) -7
o | T
Riemann surface
with a quadratic differential
% (at most simple poles)

singularities of order k > —1

Similarly n-differentials on Riemann surfaces produce flat surfaces with

. . o , 2m
conical singularities of angles multiples of -
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Flat surfaces

Strata (dimension 2g + n — 2):
Q(k) = {half-trans. surf. with conical angles (k; + 2)7}/cut and paste
The moduli spaces
Q= || Qk), Q= |] 9ok -1?)
ki-4g—4 k-4g—4+p

identify with the cotangent bundle to Mg (resp. Mg p)

The anti-invariant part of the relative homology of the orientation
double cover provides local coordinates. The Lebesgue measure on
these local coordinates give a well defined global SL(2, R)-invariant
measure on the stratum.

Hypersurface:

Q1(k) = {surfaces in Q(k) with area 1}

The induced measure on the hypersurface is finite (Masur-Veech
measure).
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Volume of principal strata

A formula for the volume of principal strata

Stable graphs:

Decorated graphs with legs
encoding e.g. the topological

type of a simple closed 0
multicurve on a topological
surface with punctures. 0

Let Gg,n be the set of all stable graphs corresponding to a surface of
genus g with n punctures (g =sum of the vertex markings + first Betti
number of the graph, n = number of legs).
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Volume of principal strata

A formula for the volume of principal strata

Define the Kontsevich polynomials:

1
Ng.n(b1,....bn) = Z WW%--- DY A%,

d-3g—3+n

For a stable graph I' in G4, define

’
Pr(b) = Co.novm—1 - ‘Aut H be H Ng,.n(by)
ecE(T) veVv(r)

Define the linear operator on polynomials by

Z: HmeHH ml - ¢(m; +1)).

E.Goujard (IMB) Masur-Veech volumes MSRI Aug. 2019

7/12



A formula for the volume of principal strata

Theorem (Delecroix-G-Zograf-Zorich)

Vol (Qg.n) = Voluy (Q(1*~*", —1M) = Y~ Z(Pr).
FeGg,n

A similar formula holds for Siegel-Veech constants.

Corollary

2 [8\** of]
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Volume of principal strata

Ideas of the proof
1. Evaluate volumes by counting integer points.
Voluv(Q(K)) = wpmv(Q<1(k)) = pumv ({Surfaces in Q(k) of area < 1})

: c .
= Nh—rgo NEm(Q) Card{Integer points in Q-n(k)}

2. Integer points are square-tiled surfaces

1
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Volume of principal strata

Ideas of the proof

3. Square-tiled surfaces decompose into cylinders.

3 4 5 3 4 5

This decomposition is encoded by stable graphs (vertices: ribbon graphs
corresponding to cylinder boundaries, labeling: genus of the ribbon graph,
edges: cylinders).
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Relation to Mirzakhani’s work

Theorem (Mirzakhani)

For any rational multicurve v € MLg 5(Z) and any hyperbolic surface
X € Tg,n, the number of simple closed geodesic multicurves on X of length at
most L of the same topological type as v is

se(L,y) ~ B(x) - ‘;( ) se-sran gty o
9,n

where B(x) = pm({y € Mﬁg n | Ix(v) < 1} is the Thurston measure of the
unit ball, and bg,,ffM (X)dX = 31 1c0 €(7)-
Theorem

For any v € MLy n(Z), the volume contribution of the associated stable graph
is
Voluv(F(v)) = consty.n - c(7)

s0 in particular Volyy Qg,n = €Onsty n - by n.
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Volume of principal strata

Asymptotic questions as g — oo

We consider the case n = 0.
@ random one-cylinder surfaces / simple closed geodesics

Theorem

close) 2 1
C(’Ynonsep) 3rg 49

@ random square-tiled surfaces / multicurves

Conjecture

The probability that a random ~ € MLy4(Z) does not separate the underlying
topological surface tends to 1 when g — oo. It is also the probability that all
conical points of a random square-tiled surface in Q4 belong to the same
horizontal layer.

Other conjectures on the number of cylinders of random square-tiled surfaces
/ primitive components of a random multicurve...
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