MSRI LECTURES ON PSEUDODIFFERENTIAL OPERATORS

XUWEN ZHU

ABSTRACT. Rough notes for lectures at the MSRI introductory workshop in Fall
2019.

A large part of these notes is a shortened version of lecture notes by Richard Melrose,
available at http://math.mit.edu/~rbm/iml190c¢2. ps.

1. PROLOGUE: WHY STUDY PSEUDODIFFERENTIAL OPERATORS?

In these two lectures we will mostly study pseudodifferential operators on R™. They
do also work beautifully well on manifolds.

A very basic example of a pseudodifferential operator is the L? inverse to the shifted
Laplacian

P=A+1, Ai==-> 8.

i=1
This inverse is a Fourier multiplier (here .% denotes Schwartz functions):

P = QSR 5 ), Qi) = )

Now, imagine that we ingtead have a wariable coefficient operator, e.g.

= pi() B, s
e

where p;; is a positive definite matrix depending on z. What would the inverse be?
At the end of this lectures we construct an approximate inverse which is a pseudo-
differential operator. This was the original motivation for studying pseudodifferential
operators in the theory of PDE.

Pseudodifferential operators are a general class of operators which include differential
operators, Fourier multipliers like () above, approximate inverses to elliptic differential

operators, and a lot more.
1
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2. SPECIAL QUANTIZATION FORMULA

To get the formula for a general pseudodifferential operator, we first look at a dif-
ferential operator of order m

A= Z ao(z)DZ, a, € CF(R"),
|| <m
where we henceforth adopt the notation

1
D =D - D2t Doy = 0s,.

M

Take u € .{R"™) and write by the Fourier inversion formula

u(z) = (2m)~" f 408 de.

n

Now let’s differentiate under the integral sign to obtain
D2u(z) = (2m)" [ evtnale)de

From here we get

L

Au(e) = (2m)™ [ e¥ta(s,g)ale)de )
where a(z, €) is the symbol of the operator:

a(z,€) = ) aa(z)E". (2)

lee| <mm

To obtain a pseudodifferential operator, we simply take a more general function a(z, )
in (1), one which is not necessarily a polynomial in the ¢ variables. The corresponding
operator A is called the quaniization of a, and we write

A = Opy(a).

Here Op, stands for quantization for y-independent symbols (as opposed to general
symbols defined later). Note that the Fourier multiplier @ defined above can now be
written as
1
o (5='gs)
Q Po 1 + |€[2

To get good properties of Opy(a) we need to make certain assumption on the behavior
of a at infinity. This brings us to symbol classes.
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3. CrassicaL KouN-NIRENBERG SYMBOLS

We use the notation

(€)== v1I+igP

This is asymptotic to || as & — 0o and is also smooth at & = 0.

Definition 3.1. Let m € R. We say a(z,£) € C®(RP x R™) lies in the symbol class
S™(RP,R™), if for all multiindices o, 8

0202a(z,&)| < Caglg)™ 14!

Here we allow p £ n for future use, but in the original formula (1) we have p = n.

The derivative bounds above mean the following: o = O((£)™), differentiation in 2
does not change the growth of a, but differentiation in & gives decay by a power of £.
As an exercise, you can check that:

e g polynomial of the form (2) lies in S™(R"; R") if we assume that all derivatives
of a, lie in L*°, and
e the symbol of the operator @ above, a(z, &) = {£)72, lies in S™2(R™; R"?).

4, (ENERAL QUANTIZATION FORMULA
AND THE POWER OF INTEGRATION BY PARTS

We now return to the formula (1). Let a € S™(R™ R"). Recalling the definition of
the Fourier transform, we rewrite (1) as

Au(z) = (2%)"/ &V Ea(x, Ouly) dyde, ue S (R™).
R2n
(This only makes sense for m < —n, more on that later.)

We arrive to the general quantization formula by allowing a to also depend on .
(This will be useful in deriving properties of quantization.) Namely, for a € S™(R%*; R")
we define

Op(ayuiz) = ()™ [ &= ala,y, uly) dyds. 3)

R2n

For m < —n, the integral in (3) converges and we get
o€ S"R™R"), m<-—n == Opla): S R") — L¥(R"). (4)

We now make sense of the oscillatory integral (3) for general ¢ (in particular, for a
which is a polynomial of the form (2}), by integrating by parts in y. Let’s just do it
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one time. We write

Op(a)u(z) = (2m) ™" f (U () alz, v, E)uly)) dydé

R2n

= (2m) ™ /R (1 =& Dy)e =€) ({&)alx, v, EJuly)) dydé  (5)
=em™ [ DL DY) Pl v, EJuls)

The integration by parts in the third line above does make sense for ¢ € S™ and
m < —n. However, in the last line we compute

(1+€- Dy)((6)alz, ¥, uly)) = O(E™ Hy) ™)

so the last integral actually converges when m < 1—mn, which is better than the original
definition of quantization! We can now integrate by parts repeatedly to arrive to

a € SHR*™R"), anym = Op(a): F(R") - L®(R"). (6)

Some caution is needed here: what we really mean is that the linear operation Op(a)
is extended to the symbol class S™ by continuity from, say, S~ . Such an extension
is necessarily unique, and we can prove identities for & € 5™ by just proving them
for rapidly decaying a and arguing by approximation. (There are some subtleties here
regarding “approximating by nice symbols”).

We can upgrade {6) further as follows:
a € SMR¥™R™), anym = Op(a): F(R") = F(R"). (7)
For that we need to apply the operators x;, Dy, to Op(a) and use the identities
z; Op(a) = Op(a)z; — Op(Dy,a},
Dy, Op(a) = Op(a)Dy; + Op(Dy,a + Dy,a)

the first of which is proved by integrating by parts in §; and the second one, by
integrating by parts in y,. We show the first one in a bit more detail since it will be
used again later:

(z; Op(a) — Opla)z;)u(z) = 2x)™" /}R% @V, —ya(z, y, Euly) dyde

= @0 | (Dg ™™ Y a(w, y, €)uly) dyds (8)

= H(QW)—”/ ei(“’_y)'ngja(x,y,é’)u(y) dydé.
]Rﬂ‘n

Since Dga, Dy,a, Dy,a still lie in 8™, we see that z; Op(a), Dy, Op(a) : Z(R™) —
L= (R™), and iteration gives 2 D2 Op(a) : & (R™) — L*°(R"), which implies (7).

The above discussion leads to the following statement:
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Proposition 4.1. Assume that a € S™(R*™; R™). Then we may define
Op(a) : L(R™") = L(R™), Opla): F'(R") — F'(R").

Here the additional powers of z,y are handled similarly to the previous argument.
To get the mapping property on tempered distributions, we use a definition by duality:

(Op(a)u, ¢)r2 = (u, Op(a) )2, we '(R?), ¢ (R
where the adjoint Op(a)* has the form (3) with a different symbol (see below) and
thus maps .%(R") to itself.

We call the resulting class of operators Op(a) pseudodifferential operators. In par-
ticular, we denote by

T (R™)
operators of the form Op(a) where a € S™(R*; R").
Define the residual operator class
TO(R") = [ ¥™(R™).
meR

One can show (with a bit of anﬁoying technical work) that every element of ¥~°° has
the form Op(e) where a lies in the residual symbol class

S—OO(R%;RR) — ﬂsm(RZn; Rn).

Note that ¢ € S™°° simply means that each derivative of a decays like O({£) ). Then
the integral kernel of (3) converges with all the =,y derivatives, implying that every
A €W~ is a smoothing operator:

/K (z,y)uly)dy where K(z,y) € C(R™),
In particular we have the mapping property 4 : % — C®(R").

5. REDUCTION TO y%-INDEPENDENT SYMBOLS

We now show that the general quantization procedure Op from (3) actually gives
the same class of operators as the special quantization procedure Op, from (1), and
get a useful asymptotic expansion:

Theorem 1. Assume that a € S™(R*;R™). Then there exists & € S™(R™;R") such
that

Op(a) = Opy(&).

Moreover, we have the asymptotic expansion

1 - -
Zak: aj 1= ( —10 - (9,5) (m:y:‘g)ly:m Oy - O ::Zayjaﬁj (9)

j=1
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in the following sense: for each N,
N—1

a(z,8) ~ > -+ € SRR,

k=0

Noté here that the expansion does make sense: the k-th term in the expansion is
in 8™ * due to the fact that Kohn—Nirenberg symbols improve by a power of £ when
differentiated in €. {This is the first time we use this fact, actually.) Note also that
the above is an asymptotic expansion, not a convergent series! Agymptotic expansions
like the one above are very common in microlocal analysis.

We will not prove Theorem 1 (see Melrose’s notes for a proof). We instead prove
a simpler statement (from which the full theorem follows, but after a good amount of
annoying technical work):

Proposition 5.1. For each N we may write
N1

Op(a) = Op () +Op(r),  rv € 5™V (R R)

k=0

where Gy are the terms in the expansion (9).

Proof. We just show the cases N = 1, N = 2, with higher N obtained similarly. We
first do N = 1. The symbol

G,(.'I,‘, Y, ‘S) - &0($:£) = a(m,y,f) - Cb(ﬂ?, 3::6)

vanishes on the partial diagonal {z = y}. We can then write

n

a(e,0.6) — tolz, ) = | Bilale,+ tly—2),©) dt = >y~ w)byla 1, 8),
=t (10)

1
bi(00,8) = [ (Ba)(os+ 4y - o) €)dt
0
From the definition of b; we see that b; € S™(R*™;R™). We now use the key identity
proved by (8):
be SMR™RY) —  Op((y; — z,)b) = Op(Dgb). (11)
We get then

Op(a’) - OPo(aO) = Op(Tl): 7"1(33,':9; 6) = Z DEjbj(m:y:é.)
=1

and 71 does lie in S™ 1 (R*"; R™) owing to the differentiation in &.

To do N = 2, we iterate this process further, applying it now to the symbol ry. We
see that the next term in the expansion should be the restriction of vy to {z = y};
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indeed, r1(z,9,€) — ri(z,2,€) can be again written in the form (10). It is easy to
compute that
ri{z,z,€) = _i(ay : aE)a’(:E:yvf)ly=$ = ti(z,§).
S0 we pet,
Op(a) — Opy(@o + &1) = Op(ry), rp € S™*(R¥™R").
[l

For A = Op(a) € I™(R"), where o € S™(R**; k"), we deline the principal symbol
a™(A) as follows:
" S™(R™R")
o (A) = [a(m,m,&)} € mj
The principal symbol will have nice algebraic properties as we will see soon. What we
see immediately from Proposition 5.1 is the following statement: if A € W™{R"}, then

c™(A) =0 < Aec V" HR).

So the principal symbol does determine A modulo a lower order term. One often
suppresses the order of the operator in the notation, writing ¢ instead of o™,

(12)

6. ADJOINTS

We now discuss algebraic properties of the classes U™(IR™). One algebraic property
that we can do easily is closure under adjoints:

Theorem 2. Assume thot A ¢ W™(R"). Then A* € U™(R™) and o{A*) = o(A). Here
the adjoint is understood in the following sense:

{Au, vy = (u, A*0)pz for all u,v e F(R").

Proof. Let A = Op(a) where a € S™{R?; R"). Then we have the following represen-
tation of the adjoint:
Op{a)*v(z) = (2x)" / Oy, @, E)uly) dydé,
R2n

From here the result follows immediately since Op(a)* = Op(a*) where a*(z,y,£) =
aly, ,§). 0





