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Overview of Lecture 1

Examples of Fourier integral operators (FIOs)

Wavefront (WF) sets and the Hérmander-Sato Lemma

Conormal distributions

Oscillatory integrals as distributions and their WF sets

Note: These lectures treat homogeneous microlocal analysis, FIOs.
Give references at end, including to semi-classical FIOs.
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Examples of FIOs: YDOs and pull-backs

©® Pseudodifferential operators

Tif(w) = [ [ e ala,y,0) ) dody,

with a € ST L(R2 x R™).

® Pull-back: composition with a diffeomorphism

Let X, Y be open subsets of R”, x : X — Y a C* diffeom.

To(f) () = X*()(2) = f(x(z)) = [ [ X0 1(0) f(y) db dy
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Examples of FIOs: Radon transform

©® Radon transform R: hyperplane integrals of a function on R"

Space M,,_1,, of hyperplanes in R ~ S"~! x R,

Skt XR9(w,s)<—>{yER”:y-w:s}EMn_Ln

Tyf(w,s) = Rf(w,s) = / f(y) do(y)

{y-w=s}

—cu [ [ 1(0) p(w) dody
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Examples of FIOs: Spherical mean operator

O Spherical mean operator: Let do = surface measure on S*1.

For t > 0, define convolution operator A; : D'(R"™) — D/(R"™).

Ti(f)(@) = Af(@) = frdo = [ flz—tw) do(w)

Snfl
= i / / e z=v1=99 1(6) f(y) db dy

Solution operator for Cauchy problem for the wave equation on R"*!
can be expressed in terms of A; and its derivatives in t.
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Examples of FIOs: Melrose-Taylor transform

©® Melrose-Taylor transform R ;1

Let 2 C R™ with C°, strictly convex boundary 02

T5(f)(@,1) = Rarr(f) (@, 1) = / /{ S
Yw=t—sCONX

= e t=s=vw)01(0) f(y, s) d ds dy
/1]

Ts: D'(0Q x R) — D'(S" ! x R).
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Examples of FIOs: Half-wave operator

@ Half-wave operator e’

P(z, D) € ¥!,(X) elliptic, self-adjoint, 1°¢ order, w/ prin symb p(z, )

Ex. Let P = (—Ag)% on Riem. (M, g), p(z,&) = |{|g. Fort € R,
w.r.t local coordinates,

JtPeD) / / w00+ 0w o1, 1.y.0) £(y) b dy
XXR"
with a € 574 ((R x X x X) x R")
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Examples of FIOs: Canonical operators

@ S(z,n) R-valued, smooth on R™ x (R™\ 0), homog deg 1 in n

Assume det(d2, S(x,7)) # 0 and a € S{ . Define

// (w, n) f(y) dy dn

Early version of FIOs used by Maslov, Egorov ...
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Two symbol classes

o Def. 1. For m € R, N € N, and X a manifold, the space of
(Hormander) type (1,0) symbols is

™ (X x RN) = {a(:v, 0) € C°(X xRY) : Va, f and K cC X,

10208 a(z,0)] < Copre < 0 >™10l 2 € K}

e Def. 2. The space of classical symbols of order m € R on X x R" is

o
(X xRY) = {a(a:, 0):an~ Zaj(x, 6), a; homog deg m—j in 0}
j=0
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Wavefront set: W F(u)

Cotangent space T*R" = {(z,£) : 2 € R", £ € (T,R")*},
has zero section, 0 = {(z,&) : £ = 0}.

Y C T*R™\ 0 is conic if (z,£) € ¥ = (z,t{) € ¥, Vt >0

Def. Let u € D'(R™). We say that (z9,&) € T*R™\ 0 is not in
WF(u) if 3 ¢(x) € CF°, ¢(z0) # 0, and a conic neighborhood
' C R™ of &y such that

—

| pu(é) | S (14 &), vEeT.

e WF(u) is a closed, conic set C T*R"™ \ 0

Ex: WE(5) = {(0,€),€ # 0} = TR\ 0
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Wavefront set: W F(u)

If 7 = the projection from T*R"™ to R", then
m(WF (u)) = singular support of u
If P(xz,D) is a YDO, then P is pseudolocal:
sing supp(Pu) C sing supp(u))
and even microlocal:

WEF(Pu) C WF(u)

All of this extends to W F(u) on general C*° manifolds.

Q. What do other operators do to W F' of functions they act on?
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Hormander-Sato Lemma

o Let X, Y be manifolds, T: £'(Y) — D'(X), with Schwartz kernel
K e D'(X xY): formally, Tf(z) = [ K(x,y) f(y)dy

e The wavefront relation of T is
WFT = {(xagaya’r/) : (xvyagv _77) € WF(K)} CT*X xTY

e Thm. Suppose WF(K) C {(z,y,£,n) : £ # 0 and i # 0}, so that
WPFr C (T*X\0)x (T*Y \ 0). Then

WF(Tu) CWFproWF(u) :=

{(#,8) : 3(y,m) s.t.(z,&y,m) € WFp and (y,n) € WF(u)}.
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Hormander-Sato Lemma: composition

o Let X, Y Z be manifolds, T : £'(Y) — £'(X), T2 : E'(Z) — E'(Y),
with Schwartz kernels K1 € D'(X xY), Ky € D'(Y x Z)

Kernel of T1 0oT5 is K1 0 Ko € D/(X X Z)
o If WFr, C (T*X\ 0) x (T*Y \ 0), WFr, C (T*Y \ 0) x (T*Z\ 0),
then WFT10T2 - I/VF‘T1 o WFT2 =

{2,620 : 3w e T*Y st (@.6y,m) € WPy,

and (.1, 2,¢) € WFr, |

13/26



Conormal distributions: conormal bundles

If Y% ¢ X", the conormal bundle of Y is

NY :={(z,§) eT*X: z €Y, ¢y =0} CT*X

e Ex 1: In X =R", write x = (2/,2") with 2’ € R¥, 2" ¢ R*7*
IfY = {(«/,2"): ' =0} ~R" % — R,
N*Y = {(2/,2",¢&,¢"): 2’ =0,£" =0}
Special case: Y = {0}, N*Y = {(0,&)} = T¢R"
e Ex2: Y ={zeX: ¢i1(x) = = dp(x) =0}, {do; ?:1 lin indep

NY ={(z,§) eT*X : z €Y, £ =%_,0;dp;(z)}
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Conormal distributions: examples

© R!: Dirac delta §(x) is conormal for Y = {0}, as are the families
x%, 2%, (z +140)%, (x —40)?, which are are meromorphic,
conormal-for-{0}-valued functions of z.

® R™: Dirac delta is again conormal for {0}, as is

Newtonian potential, N(x) = ¢,|z|>™™, n > 3.

® ¢ : R" — R¥ defining functions for Y% = {x: ¢(x) =0} C R",
u(z) a conormal distn on R¥ for {t = 0}, then u(¢) € D'(R"),
is conormal for Y. Many examples in Gelfand-Shilov.

Ex. Using u = 6(t) = a smooth meas p on Y is conormal for Y.

Ex. If (X, g) is Riemannian, s > 0, dist(x,Y) %% is (near Y)
conormal for Y.
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Conormal distributions: oscillatory integrals

Ex. OnRF:  §(0)=1 = 6(t) = (2m) % Jgr €91(6) do

e Def. l.LletY CX,Y={zeX :¢1(zx)=- = ¢r(x) =0}
with {d¢;} lin. indep. Then u € D’(X) is conormal to Y
of order m € R if it can be written as

u(x)—/ eiZ5=1034; ()] a(x,0)do
RE

with a € S7%(X x R¥). [Integral need not converge pointwise.]
I™(X;Y) := class of distributions on X conormal to Y of order m
and I(X;Y) = U,er I™(X5Y).

N.B. This choice of order is useful but disagrees with Hérmander
convention for Fourier integral distributions.
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Conormal distributions: iterated regularity

e Prop./Def. 2. u e I(X;Y) iff 3so e R s.t. u € H;" (X) and for
every N € N, and all smooth vector fields Vi, Vs, ...,V on X which
are tangent to Y, the iterated regularity condition holds:

ViVa...VNu e H®

loc

(X)

e Ex. 1. Y = {0} C X =R". The set of vector fields tangent to 0 is a
module over C*°(R"™) generated by Vj, = xj%, 1<j,k<n. Calc

L0
jal‘k

(/ez‘zﬂa(x’g) df) = /(iaej(e“"’))(z'eka+8xka) do

= / e 0p(x,0)do

with b € ST, same order as a(z,0).
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Conormal distributions: wavefront set

e Prop. If u € I(X:;Y), then WF(u) C N*Y \ 0.
Thus, sing supp(u) C Y.
e N.B. In general WF(u) C N*Y \ 0 =~ wu is conormal for Y.

e Ex. If 4 € D'(X) is a smooth density on Y, can write
wu(x) = / /17521033 (@) a(x,0)dd, ac S%O
Rk

— WF(u) C N*Y \ 0. Same for dist(x,Y) "5,
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Wave front relation of YDOs

o UDO: Ty f(z) = [ '@ ¥ a(x,y,0) f(y) dody
Schwartz kernel: Kp, (z,vy) fe’ z=y): a(x,y,0)do

- WFT1 - {(xaga x7£) : (:Cug) € T"R" \ O} = AT*R":
the diagonal of T*R"™ x T*R".
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Wave front relation of pull-backs

e Pull-back/composition with a diffeomorphism: on R",
Tof(z fe O f(y)dbdy,
Ko, (z,y) ::jje“X(wy_yyel(H)dG
© WF(Kr,) = N*{x(x) — y = 0} = {(z,y, Dx(2)'0, —0); x(x) = v/}

— Wk, = {(z,&x(2), [Dx(2)]71(€)) : (+,€) € TR\ 0}
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Wave front relation of Radon Transform

o T3f(w,s) = [W=9010) f(y)dody, K, = [ '@~ 1(x,y,0)dd

e WF(Kp,) =N*{s—y-w=0}
={(w,y-w,y; —0i*(y),0, —bw) 1w € sy eR™ 6 e R\ 0}

where i* : T*R™ — T*S"~! = restriction, =

WFp, = {(w,y-w,@z’*(y),&; y,0w):weS yeR", 0 e ]R\O}
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Wave front relation of Spherical mean operator

o Tuf(x) = cop [ =100 1(6) f(y) db dy

K, (2,y) = cp [ =010 1(6) dg

© WF(Kp,) = N*{Je — y| — t = 0}

= {(z.; |$_y0,—x:z|0):]a;—y|:t,07é0}

r—yl |

— Whr, = {(z,§,x - t;5,6) : (z,6) € T"R"\ 0}

= graph of canonical transformation x(z,¢) = (z — tl%l’f)
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Wave front relation of Melrose-Taylor transform

o Tsf(w,t) = [ty f(y s)dfdsdy, y € 0N, w € ™
Kp, = [et=s=v2)01(0) do
e WF(Kp,) = N*{t —s —y-w =0}
= {(w,t,y, 5 —0i5,(y), 0, =0y (w), —0) : t =s +y-w}

where 4%, : T)R™ — T38""! and ji : T, R" — 1700 —

WFr, = {(w,t,—0i%(y),0;y,t—y-w, 055 (w),0) : t =s+y-w,0#0}
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Wave front sets of oscillatory Integrals

e Def. ¢(z,0) is a phase function on X x (RV \ 0) if it is smooth,
R-valued, positively homogeneous of degree 1 in 6
( p(x,t0) = to(x,0) for t > 0 ) and satisfies
(dz, dp9) # (0,0).
e Prop. If ¢(z,0) is a phase function and a € ST (X x (RNV\ 0)),

then the oscillatory integral u(x) = [ @9 a(z,0)df is a well
defined distribution, u € D'(X), defined by

(u, f) = //ei‘z’(x’g) a(z,0) f(x)dfdx, VfeC(X).
o Thm. WF(u) C Ay := {(z,ds9) : dgp(x,0) =0, § A0} CT*X \ 0
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Prop: Oscillatory integrals € D'(X)

o (dy¢,dgp) # (0,0) = can form

L:ij($’0 —}-chme —}-bo(.I G)St Lt( 2¢)—e¢
J

with by, bj € ST, cx € 59,
e For f € D(X) and r € N large, define < u, f > as

/ / @z, 0) f(x)do da = / / (LY (") a(x, 0) f(x) d dx
://eid’(x’e)L’"(a(a:,Q)f(:c)) df dx

But L" : STy — ST ', integral converges for m —r < —N.
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Thm: WF of oscillatory integrals

Let (20,&0) € T*X \ Ay, ¥(x) € D(X) supported in nhood of xq

= [ [e@@O=2q(z ) (x)dl d,

Form vec fld near (z¢,&): L = m > (de; & — &) 0x,

— L(el@@0)-z8)y = cilé(z,0)-a)

|dep(x,0) — & > c(|€] +16]) on supp(a - 1), can integrate by parts

== @Zq\; rapidly decreasing on conic nhood of &

Thus, (z0,&) ¢ WF(u).

Lecture 2: Impose 2nd order conditions on ¢:
—> Fourier integral distributions and operators
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