MSRI LECTURES ON GEOMETRIC MICROLOCAL ANALYSIS LECTURE 3

LECTURER: RAFE MAZZEO

ABSTRACT. Rough notes for lectures on geometric microlocal analysis at the MSRI introductory workshop in Fall 2019.

• Categorical Point of View:

- Local and Global theory:
 - * Manifold M with boundary and defining $\Psi^{*,*}(M)$ an algebra of Ψ DOs exhibiting a certain degeneracy
- Starting point: $\mathcal{V}_0 = \{\text{all } C^{\infty} \text{ vector fields on } M \text{ which vanish at } \partial M \}$ with local coordinates $(x, y_1, ..., y_{n-1})$
 - $* \mathcal{V}_0 = \operatorname{span}\{x\partial_x, x\partial_{y_i}\}\$
 - * Form $\operatorname{Diff}_0^*(M) = \{\text{locally finite sums of } v_j \in \mathcal{V}_0\}$
 - * Prototype: $L = \sum_{j+|\alpha|=m} a_{j\alpha}(x,y) (x\partial_x)^j (x\partial_{y_j})^{\alpha}$
- $-\Psi_0^{*,*}$ is the quantization of Diff
- Observe, under dilations $D_{\lambda}: (x,y) \mapsto (\lambda x, \lambda y), D_{\lambda}^* L = \sum a_{j\alpha}(\lambda x, \lambda y)(x\partial_x)^j (x\partial_{y_j})^{\alpha}$ is "almost" dilation invariant
- Hierarchy of symbols:
 - $\frac{1}{1-\sigma_m(L)(z,\zeta=\sum a_{j\alpha}(x,y)\xi^j\eta^{\alpha})}$ where z=(x,y) and $\zeta=(\xi,\eta)$ which lines in the zero cotangent bundle, ${}^0T^*M$
 - Full ellipticity means:
 - * ${}^0\sigma_m(L)$ is invertible when $\zeta \neq 0$
 - * N(L) is invertible
 - $-N_p(L) = \sum a_{j\alpha}(x,y)(x\partial_x)^j(x\partial_{y_j})^{\alpha}$
- Given M, form M^2 and $\tilde{G} \in \mathcal{D}'(M^2)$.
 - Blow up M^2 ; $M_0^2 = [M^2; \partial(diag)]$
 - Denote by $\beta:M_0^2\to M^2$ the push-down map
 - $-\Psi_0^{*,*}=\{A: \beta^*K_A=k_A\in \mathscr{A}_{phg}(M_0^2,diag)\}$ where K_A is the Schwartz kernel of A
 - $-(M) = \text{conormal distributions on } M = \{u, \text{ stable regularity with respect to } \mathcal{V}_b(M)\}$ where $\mathcal{V}_b(M) = \{C^{\infty} \text{ vector fields tangent to } \partial M\}.$
 - Stable regularity means $u \in E$ implies $v_1...v_lu \in E$ for any $v_j \in \mathcal{V}_b$, j = 1, ..., l, for any l where E is your favorite function space.

- $-\mathscr{A}_{phg}=\{u\in\mathscr{A}_{L^2}:\forall N\ \exists v_1,...,v_N\in\mathcal{V}_b\ \mathrm{s.t.}\ v_1...v_Nu\in x^NL^2\},\ \mathrm{i.e.},\ u\sim$ $x^{\gamma_0}u_0(y) + \ldots + x^{\gamma_N}u_N(y) + O(x^N), \operatorname{Re}(\gamma_i) \to \infty$
- Denote by $\mathcal{E} = (E_{10}, E_{01}, E_{11})$ the Frobenius indices at the corresponding faces of M^2
 - $-A \in \Psi_0^{k,\mathcal{E}}, B \in \Psi_0^{l,F}, \text{ do we get } A \circ B \in \Psi_0^{k+l,\mathcal{E}+F}$?
- Want composition and mapping properties $-A \in \Psi_0^{k,\mathcal{E}} \implies A: x^{\delta}H_0^s \to x^{\delta'}H_0^{s-k} \text{ (differentiation with respect to}$ $(x\partial_x, x\partial_y)$.
 - Composition: We can project in three ways from M^3 , π_L , π_M , π_R onto the left, middle, or right respectively
 - $-k_{A \circ B} = (\pi_M)_*(\pi_L^* k_A \cdot \pi_R^* k_B) = \int A(z, z') \cdot B(z', z'') dz'$
 - See Melrose's Push-Forward theorem
 - * Idea of proof: compactify your manifold, blowup and define ΨDOs relative to the blowup
- Asymptotic conic geometry:
 - A manifold (M,g) where $g \sim dr^2 + r^2h$ with (Y,h) compact
 - Define $x = \frac{1}{r}$ to compactify

 - This yields $g \sim \frac{dx^2}{x^4} + \frac{h}{x^2}$ $\mathcal{V}_{sc} = \{x^2 \partial_x, x^2 \partial_{y_i}\} = x \mathcal{V}_b$ scattering vector fields
- Tale of three operators:
 - $-\Delta+1, \Delta, \Delta-1$
 - $-\Delta = x^2(x^2\partial_x^2 + 2x\partial_x + \Delta_{h(y)})$ where the term inside parentheses is an elliptic b-operator
 - After blow up, $\Delta 1$ is invariant while $\Delta + 1$ is not