MSRI LECTURES ON PSEUDODIFFERENTIAL OPERATORS

XUWEN ZHU

ABSTRACT. Rough notes for lectures at the MSRI introductory workshop in Fall
2019.

A large part of these notes is a shortened version of lecture notes by Richard Melrose,
available at http://math.mit.edu/~xrbm/iml90c2.ps

1. COMPOSITION FORMULA

We are now ready to prove one of the key properties of pseudodifferential operators:
in fancy terms, they form an algebra.

Theorem 1. Assume that A € U™(R"), B € ¥¥R"™). Then AB € U™"H(R") and:

o Product Rule: o™ AB) = c™(A)a*(B), in particular implying that the com-
mutator [A, B] lies in LR,

o Commutator Rule: o™ 1([A, B]) = —i{0™{A),o*(B)} where {e, o} denotes
the Poisson bracket:

a,b € CP(R™) == {a,b}=Z(85ja)(5mjb)—(8mja)(5§jb).

Remark. It might be useful to check the Commutator Rule on a one-dimensional
example (not strictly speaking legal because z is not bounded, but still making sense):

A=D, B=z |[AB]=—i
Proof. We use Theorem 77 to write A = Opy(a) for some g ¢ S™(R™;R"™). Then for
u e (R
ABu(o) = (2x) ™ [ é*%a(w, O Bule) de

R™
We now write Bu in terms of u. We first write
Bu(g) = (Bu,eghra = {u, B'eg)rs, eg(w) = %,

We use Theorem 1 of lecture 1 again to write B* = Op,(¥) for some ¥ € S*(R™; R™).
Then we have the following oscillatory testing statement:

(B*e)(z) = (Opo(B’)leg)(x) = ¥(@, €)eg(z). (1)
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To see (1) we recall that &:(n) = (2m)*6(¢ —n) (by the standard properties of Fourier
transform of tempered distributions} and write

(Opg(®)eg)(z) = (2m)™" - €=t (z, )& (n) dn

/R =T, l8(6 — ) dn = =Bz, )

We now get
Bule) = (u(y), (g, )80 = / 4 (y, € uly) dy.

]Rﬂ
Thus
ABu(z) = (2m) / Vg3, ) (3, Euly) dyde. (2)
R?n
Strictly speaking, the above argument gives (2) for a,b sufficiently rapidly decaying

in £, and the general case follows by approximation, where the integral is understood
by integration by parts in y as before.

2. Now, (2) gives that AB € W™H(R") by definition, since a(z, €)' (y, &) € S™H(R™; R™).
It remains to check the Product Rule and Commutator Bule. We have from the ex-
pansion in Theorem 1 of lecture 1

c™(A) =a mod ™,
o(B) =t mod §71,
o™ AB) = ab mod S™HE!
which immediately gives the Product Rule.
As for the Commutator Rule, we have to also compute the product BA. We write
A = Opy(a) = Opy(@)*, B = Opy(b) = Opy(V')’
where a,a’ € S™(R™;R") and b, ¢ S™(R™ R™) satisfy
c(Ay=a=d mod S, o(B)=b=10 mod Sk
By the expansion of Theorem 1 from lecture 1 we have
o =a+i(0-0)a mod S ¥ =b+4i(8,-0)b mod S
We have next, by arguing as in part 1 for both AB and BA.
[4,B] = Op(e), clz,9,€) = a(z, )V (y,€) — a'(y,§)b(z, £).
Recalling the expansions for a’,d’ above we have (modulo S™+¢-2)
co(x,9,£) = alz, )by, §) —aly, Eb(z, &) +ia(z, £)(0y - 8e)b(y, &) —ib{w, £)(, - F)aly, §).
By the expansion of Theorem 1 from lecture 1 we have [A, B] = Opy(é) where
&z, &) = c(z,,€) — (8 - O )e(z,z,€) mod S™H2,
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and from here we compute
&= ~i{a,b} mod §MH2

which gives the Commutator Rule. O

2. SOBOLEV SPACES

It is important to have pseudodifferential operators act on some normed spaces rather
than just on .% and .%’. The natural spaces are Sobolev spaces H*(R"™), defined as
gubspaces of #'(R") with the norm

[l s = [[{€) (&) |2 @eny-

For the sake of time, we give the following important result without proof.

Theorem 2. Assume that s,m € R. Then any A € U™(R") defines a bounded operator
He(R™) — H*™(R").

It follows from the L? boundedness theorem of WY(R™) operators (which needs a lot
of work!) and then the rest follows from commuting the £ powers.

3. THE SCATTERING CALCULUS

We now introduce a different class of symbols,
S™E(R™, R™)
consisting of functions a(z, £) satisfying the bounds
|50 0(2,€)] < Cagla)~ (g™,

We see from the above definition that m is the order in & (i.e. the differential order
of the corresponding operator) and £ is the order in z (i.e. the order of growth of the
coefficients of the operator, in case we had a differential operator). We have $™° C §™,
and the inclusion is strict: for §™¢ we require differentiation in & to give better decay
in z.

We can define scattering pseudodifferential operators as those of the form Opy(a)
where a € S™¢(R™; k™) (here Opy is as before). This class of operators will be denoted
by TR,

The basic properties of operators in the scattering calculus are established similarly
to the Kohn—Nirenberg calculus (it is again convenient to allow symbols to depend on
(z,y,&) and there are some details which are different, but we omit all of these here).
We have the following:
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e The (joint) principal symbol now maps

Sm,ﬂ (]Rn; Rn)

N ¥4
gt T (Rn) — Sm~1,8~1(Rn;Rn)

That is, we get a gain in both differential order and decay in z. This is natural
to see from the expansion in Theorem 1 from lecture 1 which features powers
of (8, - O¢), and the definition of our symbols classes: 8, will give better order
in z, G will give better order in &,

e Product Rule: if A € U™ B € W™¥ then AB € U™t™ ¢t gand o™t 4+ (AB) =

o™ A)a™ ¥ (B).

¢ Commutator Rule: with 4, B as in the Product Rule, g™+ ~LéH'-1([A B]) =
~i{o™¥(A4), 0™ *(B)}.

o Adjoint Rule: if A € U™E(R™), then A* € U™E(R™) and o™*(A*) = o™E(A).

e Mapping properties: if A € U™R") then A defines a bounded operator on
wetghted Sobolev spaces

A (D) HA(RY) — (@R, st R

e The residual class ¥~ = ) _, U™ consists of operators with integral
kernels in . (R*"); they map #'(R") — #(R").

A significant change from the Kohn—Nirenberg algebra is the fact that (z)*H*(R™)
embeds compactly into L?(R™) for any s > 0,4 < 0, which means that any element of
UmH(R™) with m < 0,¢ < 0 defines a compact operator on L?. This is important for
applications to geometric scattering theory.

4. THE ELLIPTIC PARAMETRIX

We now present an important application of the pseudodifferential algebra, the el-
liptic parametrix. We do it in the scattering algebra, the Kohn-Nirenberg analog is
very similar.

First though we need to discuss asymptotic expansions, which, unlike series, always
converge:

Theorem 3. Let A; € U7 H(R™), 5 =0,1,.... Then there exists A € UY(R?) such
that A ~ 3320 A in the following sense: for each N, A — Z;\;—Ol A; € U~NN(RR),

We do not prove the above theorem but remark that the statement readily translates
to the level of full symbols: taking A; = Opy{a;), A = Opg(a), we see that we need to
construct o from a;. This is done by a version of Borel’s Theorem.

We now give the elliptic parametrix statement:
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Theorem 4. Assume that P ¢ W™(R") is globally elliptic, namely the principal
symbol o{ P) satisfies for some C > 0

lo(P)(z, &) 2 OHz)™(g)* when |z|+[¢] > C.
(Note that the above condition s independent of the choice of the representative of the
principal symbol.) Then there exists Q@ € U~ ¢(R™) such that
PQ=1+T""°R"), QP=1I}¥"®R").
Remarks. 1. A consequence of this is the fact that P : {z)! H*(R") — {z)!"*H*™(R")

is a Fredholm operator for any s, . Indeed, it is invertible modulo ¥~°°* which consists
of compact operators. (In case someone asks, the index of / need not be 0.)

2. An example of an elliptic operator is given by A+ 1 € ¥2(R"), or A+ |z|? — E €
U22(R?) where £ € R. And A + 1 is elliptic in U29(R™), with the principal symbol
given by |€]* + 1 (it is important that the term 1 is included in the principal symbol
of the scattering calculus!). However, A € ¥2%(R"™) is not elliptic in the scattering
calculus, though it is elliptic in the Kohn—Nirenberg calculus. This makes sense since
A +1 is a Fredholm (in fact, invertible) operator H? — L?, but A is not.

Proof. 1. Fix a representative py for o(P). We first define an approximate inverse
1
Qo = Opglao), qo = - for ||+ [£] > 1.

Because of the ellipticity condition, we can define gy like that and we have gy €
Sk (R™R™). (The latter does need some work, differentiating py' in z and ¢
many times and checking the bounds.)

From the Product Rule we see that PQy € W*(R") and ¢%°(PQy) = 1. Thus
R:=1-PQyc¥ VYR,

2. We now invert /— R by “Neumann series” except it is instead a Neumann asymptotic
expansion, Namely we use Theorem 3 o construct @1 € UP°(R™} such that

Qu~ ) R
=0
Put ¢} == Qp¢}1. Then
PQ = R)Q, = I + T~=~%(R",
3. We similarly construct @' € W%°(R") such that
Q'P = I+ T (R"),

By looking at the product @ PQ (and since ¥°~% ig an ideal in the pseudodifferential
algebra), we see that @@ — (' € U=°»°(R"). This finishes the proof. O
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5. MANIFOLDS

We now very briefly talk about calculus on manifolds. For a compact manifold M
we can define the algebra U™ { M} of pseudodifferential operators with Kohn—Nirenberg
symbols. This can be constructed using local charts, where the key fact (which we omit
here) is that the class ™(R™) is invariant under coordinate changes (forgetting about
z — 00). The full symbol cannot be invariantly defined, and the principal symbol is
now a function on the cotangent bundle T*M. This can already be seen in the cage
of a vector field X: the corresponding differential operator P = —X € W!(M) has
principal symbol

o(P)(z,8) = (£, X (z))-
The basic properties still hold. Note that the Poisson bracket makes sense on T M:
a low-tech way is to say that the formula for it is independent of the choice of local
coordinates on M, and a hi-tech way is to use that 7™M is a symplectic manifold.

If M is noncompact, we have to specify what is happening as © — co. One approach
is to assume that M is a scattering manifold, then one can define an analog of the
scattering algebra.





