MSRI LECTURES ON GEOMETRIC MICROLOCAL ANALYSIS LECTURE 2

LECTURER: RAFE MAZZEO

ABSTRACT. Rough notes for lectures on geometric microlocal analysis at the MSRI introductory workshop in Fall 2019.

- Start with noncompact space and an elliptic operator: $(M, g), \Delta; \Delta u = f$
 - Want: $G \in \mathcal{D}'(M \times M)$ which solves $\Delta G = I = G\Delta$.
 - Need to understand G
 - We'll have

$$u(z) = \int G(z, \tilde{z}) f(\tilde{z}) dv(\tilde{z})$$

otherwise known as $u = (\pi_L)_*(G\pi_R^*f)$ where π_L and π_R are projections on the left/right from $M \times M \to M$.

- G is singular along the diagonal of $M \times M$, i.e., when $z = \tilde{z}$.
- Parametrix method allows us to find \tilde{G} which approximates G; $\Delta \tilde{G} = I R_1$, $\tilde{G}\Delta = I - R_2$ with $R_1, R_2 \in \Psi^{-\infty}$ (smoothing operators), i.e., $R_i(z, \tilde{z}) \in$ $C^{\infty}(M \times M).$
 - This gives local regularity but not Fredholmness or mapping properties.
- <u>Better</u>: $R_j : L^2 \to \rho^k H^\infty \implies \Delta$ is Fredholm
 - The kernel decays away from the diagonal
 - $-\Delta u = 0$ (u in L²-null space) $\implies u = R_2 u \implies u \in C^{\infty}$ and definite rate of decay.
- <u>Test case</u>: $\Delta s(n-1-s)$ on \mathbb{H}^n
 - Set $\lambda = s(n-1-s)$
 - We want to solve for the resolvent $(\Delta \lambda)^{-1}$
 - $-G_s$ solves

$$\left(\partial_r^2 + (n-1)\frac{\cosh r}{\sinh r}\partial_r + \lambda\right)G_s = 0$$

- Setting $\rho = e^{-r}$ yields $G_s \sim \rho^s$ or ρ^{n-1-s} as $\rho \to 0$.
- Specialize to n = 3: explicit solution $G_s = \frac{e^{-(s-1)\rho}}{\sinh \rho}$ in the UHS model
- Dilation invariance: $G_s(x, \tilde{x}, y \tilde{y}) = G_s(\beta x, \beta \tilde{x}, \beta (y \tilde{y}))$ for all $\beta > 0$
- Blow up the submanifold $\{x = 0, \tilde{x} = 0, y = \tilde{y}\}$ in $M \times M$. and define $M_0^2 = [M \times M, S]$, that is, we are attaching a sphere at each point of the diagonal

-G is singular along the diagonal and smooth up to the front face

$$-\left(\Delta - s(n-1-s)\right)u = f \in C_0^\infty \implies u = G_s f \sim x^2 + h.o.t. = a(y)x^s + \dots + b(y)x^{n-1-s}$$

- Scattering operator: $S(s): a(y) \mapsto b(y)$; Scattering "matrix"
 - $\overline{s = \frac{n-1}{2}}$ is a "critical line"; to the left, *a* decays more and to the right *b* decays more
- <u>Generalize</u>:
 - $-\Delta + V s(n-1-s), V \in C_0^{\infty} \text{ or } V = 0 \text{ in } \mathbb{H}^n \setminus \Omega$
 - Still want G_s with $(\Delta + V s(n-1-s))G = \delta$
 - $-G_s$ is approximated by $\tilde{\chi}_1 G_{in} \chi_1 + \tilde{\chi}_2 G_{out} \chi_2$ as before
 - We get

$$\left(\Delta + V - s(n-1-s)\right)G_s = \tilde{\chi}_1 L G_{in}\chi_1 + \tilde{\chi}_2 L G_{out}\chi_2 + [L,\tilde{\chi}_1]G_{in}\chi_1 + [L,\tilde{\chi}_2]G_{out}\chi_2$$

- Want to solve $LG_{in} = I Q_1$ with $Q \in C^{\infty}(M \times M)$.
- <u>Claim</u>: \tilde{G}_s is smooth on M_0^2 .
 - In fact: $L\tilde{G}_s = I R_1$ and $\tilde{G}_s L = I R_2$ with $R_1, R_2 \in C^{\infty}(M_0^2)$ where C^{∞} is being identified with \mathscr{A}_{phg} , polyhomogeneous functions with smooth expansions.
- Consider \mathbb{H}^n/Γ , convex cocompact quotients
 - $-M = \mathbb{H}^n/\Gamma \to \overline{M}$, its compactification
 - Look at $M_0^2 = [\bar{M} \times \bar{M}, \partial(\text{diag})]$
 - Consider $\Delta s(n-1-s)$ on \mathbb{H}^n/Γ
 - $-G_s$ =resolvent∈ $Ψ_0^{-2,\epsilon}$ and is meromorphic in s where the subscript 0 refers to the blow-up
 - Consider the vector fields $\nu_0 = \{x\partial_x, x\partial_{y_i}\}$
 - Take $\{U_j\}$ a cover of our manifold
 - For each U_j , choose G_j an inverse for $\Delta s(n-1-s)$ in $U_j \subset \overline{\mathbb{H}^n}$.
 - $-\tilde{G}_s = \sum \tilde{\chi}_j G_j \chi_j$ and $(\Delta s(n-1-s))\tilde{G}_s = I R$ for a smoothing operator R
 - * $[\Delta, \tilde{\chi}_j] G_j \chi_j$ shows up in the error
 - * The commutator is smooth and bounded while each G_j decays like x^s which tells us that the error is supported away from the diagonal.
 - * Thus, $(\Delta s(n-1-s))\tilde{G}_s = I$ +compact smoothing operator
 - We want $G_s = \tilde{G}_s (I R_s)^{-1}$

* Approximate
$$(I-R)^{-1} \sim I + R_s + R_s^2 + ...$$

 $-g = \rho^{-2}\tilde{g}, \frac{dx^2 + h(x,y)}{x^2}$ with $h(x,y) \sim \sum [(h_l)_{ij}(y)dy^i dy^j]x^l$
* $\Delta_g \sim \Delta_{\mathbb{H}^n}$
* $\sum a_{j\alpha}(x,y)(x\partial_x)^j(x\partial_y)^{\alpha}$ the leading term of Δ in \mathbb{H}^n .

• Summary: start with (M, g)

- First step:

* Compactify and form $M_0^2 = [\bar{M} \times \bar{M}, \partial(\text{diag})]$

- * $\tilde{G} = G_0 + G_1 + G_2$ operator does not degenerate after blowup
- * Lift $x\partial_x$, $x\partial_{y_i}$ to M_0^2
- * $\Delta G_0 = I R_0$ with R_0 smooth localized along blowup
- * $R_0: x^s L^2 \to x^s H_0^{\infty}$ where subscript 0 refers to differentiation with respect to the vector fields $x \partial_x$ and $x \partial_y$.

- Second step:

* Gain extra decay and apply L^2 Arzela-Ascoli