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Overview of Lecture 2

Conormal distributions (review)

Nondegenerate phase functions

® Symplectic geometry, Lagrangians and canonical relations

Fourier integral (Lagrangian) distributions

® Fourier integral operators (FIOs) and estimates

Application: seismic imaging
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Conormal distributions (review)

oY ={zeX":¢1(x) = ¢a(x) = = ¢r(x) =0}, {dgbj}?:l lin ind

NY ={(z,§) eT*X : z €Y, £ =XF_,0;dg;(x), 0 € R"}
I'(X;Y) = {u(z) = / /175210395 ()] a(xz,0)dl, a € S%(R”XRI“)}
Rk

o WF(u) C N*Y'\ 0

* Phase function ¢(x,0) = X¥_,0;¢;(x) on X x R* is linear.
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Nondegenerate phase functions

e Def. ¢(x,0) is a phase function on X x (RY \ 0) if it is smooth,
R-valued, homog of degree 1 in # and

(dxgba d0¢) 7é (070)'

® THM. If a € ST{(X x RY), then u = [pn @9 a(x,0) d6 € D'(X)
then WF(u) C {(z,dz¢(z,0)) : dogp(z,0) =0}

e Def. ¢ is nondegenerate if dw,g(%), ....,dx79(%) lin indep on

Crity == {(z,0);dgp =0} C X x (RV\ 0).
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Nondegenerate phase functions

® ¢(x,0) nondegenerate <—-

rank [dggqﬁ, d(%@qb} =N, Y(,0) € Crit,

® Prop 1. ¢ nondeg = Crrity is a closed, conic submfld of dim n.
Furthermore, the map h : Crit, — T*X \ O,

h(x7 ‘9) = ($, dx(b(xv 9))7

is an immersion, and h(Crity) = Ay = a conic Lagrangian submfld
of T*X \ 0 (to be defined).

® ¢ is said to parametrize Ag.
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Thm: WF of oscillatory integrals

Let (20,&0) € T*X \ Ay, ¥(x) € D(X) supported in nhood of xg

o Pu(¢ = [ [ @@= q(x, 0)(z) df du,

® Form vec fld near (z¢,&): L = |d$¢ o Z (du;¢ — &5) O,
= L(e!0@0)-28)y = cild(0)-z)

® |dyp(x,0) —&| > c(|€] +10]) on supp(a - ), can integrate by parts
— {bﬂ rapidly decreasing on conic nhood of &,

® Thus, (.%'0,150) ¢ WF(’LL)

6/29



Symplectic geometry: linear algebra

¢ Def. A symplectic vector space is a pair (V,w), with w a bilinear,
nondegenerate, skew-symmetric form on V.

e If V is finite dim, dim(V') is necessarily even, say dim(V') = 2n.
e Ex. V = R? with the area form dz A dy
® Ex. V=R™={(21,...,%0,Y1,---,Yn)}, w= dy; Adz;

* w((w,y); (@' y)) = 3 Xlwiy; — ziys)
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Symplectic geometry: linear algebra

¢ Def. Let (V,w) be symplectic and L C V' a linear subsp. Then

(i) LY :={v eV :w(u,v) =0,Vu € L},
and dim(L*) = dim(V')— dim(L) since w nondegenerate

(ii) L is isotropic if L C L%, i.e., w|rxr =0
(iii) L is co-isotropic (involutive) if L C L
(iv) L is Lagrangian if L = L* (= dim(L) = dim(V) )
e Ex. dim(L) =1 = isotropic, codim(L) =1 = co-isotropic.
Ex. dim(V) =2 = any 1-dim subspace is Lagrangian

Ex. In R?", L = R" x {0} and {0} x R" are Lagrangian
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Symplectic geometry: manifolds

e Ex. Cotangent bundle 7" X of a smooth X"

® Local coordinates (z1,...,2,) on X, induce local coords
(T1,...Tp,u1,...up) on TX, (x1,29,...29,&1,&2,...&,) on T*X

e IfueT,X, then u= Zuia%i
o If ¢ €T X, then & = Y &du;
® Canonical 1-form on T*X: ¢ := {dx = ), §;dx;, coord-indep.
e Canonical 2-form: w :=do = dé Ndx =) d&; A du;,
t = (ts,te), s = (Sa,5¢) then w(s,t) = 2(<te, 80 > — < s¢,tp >)

w is bilinear, skew-symmetric, nondegenerate, closed
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Symplectic geometry: manifolds

e Def. (M,w) is a symplectic manifold if w is a closed diff 2-form on
M and w7, ar is symplectic for all x € M. Thus, dim(M) = 2n and
w" is a volume form orienting M.

Ex. (T*Rn, Z lel A\ dl’l), ((Cn, Z dyz A dSCZ), (T*X, w)

¢ (T*X,w) has a bit more structure: it is exact (since w = do) and is
conic, since there is a nice action of Ry on 7% X \ 0, (z,&) — (z, t&).

e Def. I' C 7" X \ 0 is conic if (z,&) € T then (z,t£) € T, Vt.

Ex. If P(x,D) € W7 (X) with principal symbol p,,(x,&), then the
characteristic variety of P,

Spi={(z,8) € T*X\ 0: pp(2,§) =0} is closed, conic.
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Lagrangian manifolds

e Def. Let (M,w) be a symplectic manifold and L C M a smooth
submanifold. Then L is isotropic/co-isotropic/Lagrangian, resp.,
if T,L < T,M is isotropic/co-isotropic/Lagrangian, Vx € L.

{ Lagrangian submanflds } = { co-isotropic } N { isotropic }

® Prop. L is Lagrangian iff w|;, = 0 and dim(L) = 5 dim(M).

® Ex. If f € C°(X), then Ay := {(z,df (z)) 12 € X} C (T"X,w)
is Lagrangian, but not conic

® wlp, =0, foz; = fuju

® zero-section 0 = {(z,0) : x € X} is Lagrangian, but not conic.

® Homogeneous microlocal analysis: work in 7% X \ 0.
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Canonical transformation

e Def. If (M,wyr) and (N,wy) be two symplectic manifolds of
the same dimension, then a C"™° map ® : M — N is a canonical
transformation if ®*wy = wyy

o d*w(V,... Vi) =w(®(x))(DP(VY),... DD(Vy))
Since wys nondeg, this = & is a local diffeomorphism.

Ex. A diffeom x : X™ — Y™ induces a canonical transformation,
Q. THX" — T*Y™,

O(z, &) = (x(x), (Dx)")"(9)

® Def A canonical graph is the graph of a canonical transformation.
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Conic Lagrangian manifolds

® Prop. If Y C X is smooth, then its conormal bundle N*Y \ 0 is a
conic Lagrangian in 7 X \ 0.

® Thm. Any conic lagrangian A can be microlocally parametrized by a
nondegenerate phase function ¢. l.e., Vg = (z0,&) € A, 3¢,
a nondeg phase on a conic nhood of (zg, ) € X x (R0 \ 0),
s.t. A = Ay near ).

Sketch of pf. (i) If projection (x,£) — &, is a submersion near A,
then microlocally A has form {(z,¢) : x = %fg’}, with H (&) homog
degree 1 and then ¢ =z - & — H(§) ~ A.

(ii) Show (i) holds after a suitable quadratic change of coordinates.

® Note: A conic Lagrangian need not be of the form N*Y for some
3
smooth Y. For H({) = &1 above, Ay is the closure of the conormal
2

£
bundle of the smooth pts of the curve: (%)% = (%2)2.

13/29



Fourier integral distributions: Definition

® For ¢(x,0) a nondeg phase, Crity, := {(z,0);dgp¢ = 0}
and h: Crity — T*X; h(x,0) := (z,d.$(x,0)),
h(Crity) = Ay = {(z,de0); (x,0) € Cy}

® Prop. Ay is a conic Lagrangian submanifold. Pf. In fact, the
canonical 1-form 0 = § - dx = dy¢ - dv = dop — dpp - df = 0 on Ay

¢ Def. The class I"(X;A) C D'(X) of Fourier integral distributions
of order m associated with A consists of all locally finite sums of

. N,
m+ dimX

. i)
Uy = /]RN¢ @0 o (2,0)db, a € St (X x RN#)

over all ¢ microlocally parametrizing Ay C A.

® Recall: WF(ug) C Ay CA
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Fourier integral distributions: Examples

e Ex. Conormal distributions are Fourier integral distributions: For
Y ={¢1(z) = = ¢p(z) = 0},
u(z) = /e 10565 () a(x,0)db,

° H(x,0) = E§:19j¢j(3:) is homog of deg 1

dp = ((¢1(2),.... 0k (2)), X 0d¢;(x)) # (0,0)
is nondeg since {d(¢;(z))} lin indep
° Ny ={(z,X0id¢;(z)): z€Y,0 eRF}\0=N*Y\0
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Fourier integral distributions: Examples

= UDO, Schwartz kernel: K, (z,y) = [ '@ q(x,y,0)do

T5 = pull back by x: Kr,(z,y) fe O a(z,y,0)do

T3 = Radon transform: Krp,(w,s,y) = fei(y""*s)g 1(s,y,60)do

T, = spherical mean operator: Kr,(z,y) = [ I#=¥1=001(9) dg

Ts = Melrose-Taylor transf: K7, (w,t,y,s) = [{((t=57v2)0) 1(9) dg
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Invariance of phase function

® Thm. For any two phase functions parametrizing the same
Lagrangian, Ay = A(z;, there is a chain of operations

of the following types which transforms ¢ to qg
e 1) Adding variables: ¢(z,0,0) := ¢ + %%ﬁ a nondeg phase function
¢ 2) Reducing variables: stationary phase.
* 3) Conic change of variables: 6(z,6) and ¢ = ¢(z, 6(z, )
Crity = {(z,0) : dgf = 0} = {(x,0) : dgpdgl = 0} = Crrit,
Ag={(2,ds9)} = {(2,do0 + dpdd )} = Ay

Then [ e¢@0q(x,0)do = feii’(z’é)d(x,é)dé.
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Fourier integral operators (FIOs): Definition

® On T*(X x Y) the natural symplectic form is wx+wy
But on T* X x T™*Y the natural symplectic form is wx —wy

* Def. A conic Lagrangian C' C ((T*X \ 0) x (T*Y \ 0), wx — wy) is
called a canonical relation.

C' :={(z,&,y,—n)} is then a Lagrangian w.r.t. wx + wy, and v.v.

e Def. Let C C (T*X \ 0) x (T*Y \ 0) be a closed, conic canonical
relation. A Fourier integral operator associated to C' is an operator
F:&(Y)— D'(X) whose Schwartz kernel Kp € I"(X x Y;C").
The class of all such is denoted by I"(X,Y; C).
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Fourier integral operators (FIOs)

® Thus, an FIO in I™(X,Y;C) is a locally finite sum of

Fi(z) = / 89 a(z,y.0) () dbdy,

m- dimX+4dimY N

with a € S g (X xY xRY).

o C=Ay={(z,dp;y, —dyo) : dgp =0}
* Ex. If X =Y,C = Ap«x = graph(Idp-x), then

I™(X,X;C) = ¥"(X).
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Fourier integral operators: Examples

e Ty = pull back: C = {(z, X (2)8;y,0) : x(z) =y}
e T3 = Radon transf: C' = {(w, s,0y, —0;y, —0w) : s =y - w}

® T, = spherical mean operator:

_ r—Yy. TZYN o —
C—{(x,0|$_y|,y,9|x_y|).|x y|—t,0€R\0}

T5 = Melrose-Taylor tr: C' = {(t,y,0, —0w; s,w,0,0y);t =s+y-w}

But: for T = Half-wave op. for ¢ € R fixed,

C={(x,0,y,0 —dyp(y,0)) : x — y + tdpp(y, 0) = 0}

need not be conormal
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Fourier integral operators: Projections

Geometry of canonical relations <> structure of projections

. C C (T*X \ 0) x (T*Y \ 0)
% N
T*X \ 0 T*Y \ 0

e Note that dim(T*X) = 2nyx, dim(T*Y) = 2ny, dim(C) = nx + ny.

® Prop. At any point ¢y € C, corank(D7y) = corank(D7R).
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Fourier integral operators: Projections

e Def. C' is nondegenerate if one, hence both, projections have
maximal rank everywhere.

® Prop. Suppose C is nondegenerate. (i) If dim X=dim Y, then both
7, g are local diffeoms, and C' is a local canonical graph.

(i) If dim(X) > dim(Y’), then 7z, is an immersion and 73 is a
submersion.

We say that the Bolker condition is satisfied if, in addition,
7wr : C — T*X is globally injective.
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Fourier integral operators: Radon transform

d(w, s,14:0) = (y-w—5)0 on (S* ! x R x R") x (R 0)

~ O3 = {(w,y-w,@y, —0;y, —bw):weS" L yecR", 0 ¢ R\O}
Coordinateson C3: w € S* 1 y € R*, § € R\ 0

® TFL(ya 07(“)) = (w?y s W, —9.% 9)'
® TFR(.% 9,&)) = (y7 —9&))

rank(Dmg) = n+rank(DI()£)"é)) = 2n = maximal =

71, g diffeomorphisms, C5 local canonical graph; 7y, is 1-1, mg is 2-1
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Fourier integral operators: Spherical mean operator

Cy={(z,§,x —t,&) iz €R", £ €R™\ 0}

TFL($a§) = ('rag)v
® T['R(HZ',S) = (‘T - t%?&)

® 71, R are diffeomorphisms, Cy is a canonical graph

24/29



Fourier integral operators: Solution of the wave eq

d(z,y,0,t) =(x—y)-0+t0], z,y e R", t e R\ 0, 6 € R\ 0

C = {(z,t,0,6];y,0) :w—y—i—t% = 0,t # 0}

mr(x,t,0) = (x,t,0,0|)

Tr(z,,0) = (x —y +trg,0)

® max rank, w7, a immersion, 1-1, mgr a submersion
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Estimates for nondegenerate FIOs

Thm. (Hérmander) If C C (T*X \ 0) x (T*Y\ ) is a
X, 0),

nondegenerate canonical relation and F € [~
then F: HS, (V) — H> ™(X).

comp loc

n—1
Radon transf: T35 € I~ (Cg) = T3:H — H 2

comp loc

n—1
Spher means: Ty € I~ (C’4) — Ty HS > H. ?

comp loc

Soln of WE: T € I"4(C), T : HS,,,, — Hj,

comp
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Inverse problems in seismology

. surface (source) pressure field: data (receiver)

7

o
c(x1, o, x3): subsurface (image)

® [': image — data: forward operator
Wave equation:

(%) =~ L2 (z,t) — Apla,t) = 5()d(x — s)

c2(x) ot2

p(z,t) =0,t <0

® p(x,t) is the pressure field resulting from a pulse at the source s
c(z) = velocity field independent of direction
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Formal linearization

® ¢c=¢y+dc

® p=po+dp

2 2 c
o (1) 2t TP (@) — A0 (a, 1) = Hh 2
° jp=0,t<0

F:dc— 5p|2><(O,T)
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Rakesh: F'is an FIO

to find the image we use F*

Under the travel time injectivity cond (Bolker cond), F*F is a WYDO.

If background ray geometry has caustics of at worst fold type
(map (s,t) — x(s,t) has fold singularities, single source —

e (C'is a two sided fold and C* o C = A U C; where C; is another two
sided fold (Melrose-Taylor)

Thm. (F. - Nolan) If F' € I™(C) then F*F € I?™%(A, C}).
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