Introduction to Fourier Integral Operators - Lecture 2

Raluca Felea and Allan Greenleaf

Introductory Workshop

MSRI Microlocal Analysis Program

- Conormal distributions (review)
- Nondegenerate phase functions
- Symplectic geometry, Lagrangians and canonical relations
- Fourier integral (Lagrangian) distributions
- Fourier integral operators (FIOs) and estimates
- Application: seismic imaging

Conormal distributions (review)

•
$$
Y = \{x \in X^n : \phi_1(x) = \phi_2(x) = \dots = \phi_k(x) = 0\}, \{d\phi_j\}_{j=1}^k
$$
 lin ind
\n
$$
N^*Y = \{(x, \xi) \in T^*X : x \in Y, \xi = \sum_{j=1}^k \theta_j d\phi_j(x), \theta \in \mathbb{R}^k\}
$$
\n
$$
I^m(X;Y) = \{u(x) = \int_{\mathbb{R}^k} e^{i[\sum_{j=1}^k \theta_j \phi_j(x)]} a(x, \theta) d\theta, a \in S_{1,0}^m(R^n \times R^k)\}
$$

$$
\bullet\ \mathsf{WF}(u) \subseteq N^*Y \setminus \mathbf{0}
$$

• Phase function $\phi(x,\theta)=\Sigma_{j=1}^k\theta_j\phi_j(x)$ on $X\times\mathbb{R}^k$ is linear.

Nondegenerate phase functions

• Def. $\phi(x,\theta)$ is a phase function on $X \times (\mathbb{R}^N \setminus 0)$ if it is smooth, R-valued, homog of degree 1 in θ and

$$
(d_x\phi, d_\theta\phi) \neq (0,0).
$$

- THM. If $a \in S^{m}_{1,0}(X \times \mathbb{R}^{N})$, then $u = \int_{\mathbb{R}^{N}} e^{i\phi(x,\theta)} a(x,\theta) d\theta \in \mathcal{D}'(X)$ then $WF(u) \subseteq \big\{ (x, d_x\phi(x, \theta)) : \, d_\theta\phi(x, \theta) = 0 \big\}$
- Def. ϕ is nondegenerate if $d_{x,\theta}(\frac{\partial \phi}{\partial \theta_1})$ $\frac{\partial \phi}{\partial \theta_1}),....,d_{x,\theta}(\frac{\partial \phi}{\partial \theta_N})$ $\frac{\partial \varphi}{\partial \theta_N}$) lin indep on

$$
Crit_{\phi} := \left\{ (x, \theta); d_{\theta} \phi = 0 \right\} \subset X \times (\mathbb{R}^N \setminus 0).
$$

Nondegenerate phase functions

• $\phi(x, \theta)$ nondegenerate \iff

$$
rank\Big[d_{x\theta}^{2}\phi,\,d_{\theta\theta}^{2}\phi\Big]=N,\quad\forall(x,\theta)\in Crit_{\phi}
$$

• Prop 1. ϕ nondeg $\implies Crit_{\phi}$ is a closed, conic submfld of dim n. Furthermore, the map $h: Crit_{\phi}\rightarrow T^*X\setminus {\bf 0},$

$$
h(x, \theta) = (x, d_x \phi(x, \theta)),
$$

is an immersion, and $h(Crit_{\phi}) = \Lambda_{\phi} =$ a conic **Lagrangian** submfld of $T^*X \setminus 0$ (to be defined).

• ϕ is said to **parametrize** Λ_{ϕ} .

Thm: WF of oscillatory integrals

Let $(x_0, \xi_0) \in T^*X \setminus \Lambda_{\phi}, \ \psi(x) \in \mathcal{D}(X)$ supported in nhood of x_0

•
$$
\widehat{\psi u}(\xi) = \int \int e^{i(\phi(x,\theta)-x\cdot\xi)} a(x,\theta) \psi(x) d\theta dx
$$
,

• Form vec fld near (x_0,ξ_0) : $L = \frac{1}{[dx\phi_0]}$ $\frac{1}{|d_x\phi-\xi|^2}\sum_j(d_{x_j}\phi-\xi_j)\partial_{x_j}$

$$
\implies L(e^{i(\phi(x,\theta)-x\cdot\xi)}) = e^{i(\phi(x,\theta)-x\cdot\xi)}
$$

• $|d_x\phi(x,\theta) - \xi| \ge c(|\xi| + |\theta|)$ on supp $(a \cdot \psi)$, can integrate by parts

 $\implies \widehat{\psi u}$ rapidly decreasing on conic nhood of ξ_0

• Thus, $(x_0, \xi_0) \notin WF(u)$.

Symplectic geometry: linear algebra

- Def. A symplectic vector space is a pair (V, ω) , with ω a bilinear, nondegenerate, skew-symmetric form on V .
- If V is finite dim, dim(V) is necessarily even, say dim(V) = $2n$.
- Ex. $V = \mathbb{R}^2$ with the area form $dx \wedge dy$

• **Ex.**
$$
V = \mathbb{R}^{2n} = \{(x_1, \ldots, x_n, y_1, \ldots, y_n)\}, \quad \omega = \sum dy_j \wedge dx_j
$$

• $\omega((x, y); (x', y')) = \frac{1}{2} \sum (x_i y'_i - x'_i y_i)$

Symplectic geometry: linear algebra

• Def. Let (V, ω) be symplectic and $L \subseteq V$ a linear subsp. Then (i) $L^{\omega} := \{ v \in V : \omega(u, v) = 0, \forall u \in L \},\$ and dim $(L^\omega) = \mathsf{dim}(V) - \mathsf{dim}(L)$ since ω nondegenerate (ii) L is **isotropic** if $L \subseteq L^{\omega}$, i.e., $\omega|_{L \times L} \equiv 0$ (iii) L is co-isotropic (involutive) if $L^\omega \subseteq L$ (iv) L is Lagrangian if $L = L^{\omega}$ (\Longrightarrow dim $(L) = \frac{1}{2}$ dim (V)) • Ex. dim $(L) = 1 \implies$ isotropic, codim $(L) = 1 \implies$ co-isotropic. Ex. dim $(V) = 2 \implies$ any 1-dim subspace is Lagrangian **Ex.** In \mathbb{R}^{2n} , $L = \mathbb{R}^n \times \{0\}$ and $\{0\} \times \mathbb{R}^n$ are Lagrangian

Symplectic geometry: manifolds

- Ex. Cotangent bundle T^*X of a smooth X^n
- Local coordinates (x_1, \ldots, x_n) on X, induce local coords $(x_1,\ldots x_n,u_1,\ldots u_n)$ on TX , $(x_1,x_2,\ldots x_n,\xi_1,\xi_2,\ldots \xi_n)$ on T^*X

• If
$$
u \in T_x X
$$
, then $u = \sum u_i \frac{\partial}{\partial x_i}$

• If
$$
\xi \in T_x^*X
$$
, then $\xi = \sum \xi_i dx_i$

- Canonical 1-form on T^*X : $\sigma := \xi dx = \sum_i \xi_i dx_i$, coord-indep.
- Canonical 2-form: $\omega := d\sigma = d\xi \wedge dx = \sum d\xi_i \wedge dx_i$, ""

 $t=(t_x,t_\xi),\,\,s=(s_x,s_\xi)$ then $\omega(s,t)=\frac{1}{2}(< t_\xi,s_x>-< s_\xi,t_x>)$

 ω is bilinear, skew-symmetric, nondegenerate, closed

Symplectic geometry: manifolds

• Def. (M, ω) is a symplectic manifold if ω is a closed diff 2-form on M and $\omega|_{T_xM}$ is symplectic for all $x \in M$. Thus, $\dim(M) = 2n$ and ω^n is a volume form orienting $M.$

Ex. $(T^*\mathbb{R}^n, \sum d\xi_i \wedge dx_i)$, $(\mathbb{C}^n, \sum dy_i \wedge dx_i)$, (T^*X, ω)

- (T^*X,ω) has a bit more structure: it is exact (since $\omega = d\sigma$) and is **conic**, since there is a nice action of \mathbb{R}_+ on $T^*X \setminus \mathbf{0}, (x, \xi) \to (x, t\xi)$.
- Def. $\Gamma \subset T^*X \setminus 0$ is conic if $(x,\xi) \in \Gamma$ then $(x,t\xi) \in \Gamma, \forall t$.

Ex. If $P(x,D) \in \Psi_{cl}^m(X)$ with principal symbol $p_m(x,\xi)$, then the characteristic variety of P .

$$
\Sigma_P:=\left\{(x,\xi)\in T^*X\setminus \mathbf{0}: p_m(x,\xi)=0\right\} \text{ is closed, conic.}
$$

Lagrangian manifolds

• Def. Let (M, ω) be a symplectic manifold and $L \subset M$ a smooth submanifold. Then L is **isotropic/co-isotropic/Lagrangian**, resp., if $T_xL \leq T_xM$ is isotropic/co-isotropic/Lagrangian, $\forall x \in L$.

 $\{$ Lagrangian submanflds $\} = \{$ co-isotropic $\} \cap \{$ isotropic $\}$

- Prop. L is Lagrangian iff $\omega|_L=0$ and $\dim(L)=\frac{1}{2}$ $\dim(M)$.
- Ex. If $f \in C^{\infty}_{\mathbb{R}}(X)$, then $\Lambda_f := \big\{ (x, df(x)) : x \in X \big\} \subset (T^*X, \omega)$ is Lagrangian, but not conic
- $\omega|_{\Lambda_f} = 0, \Longleftrightarrow f_{x_i x_j} = f_{x_i x_i}$
- zero-section $\mathbf{0} = \{(x,0) : x \in X\}$ is Lagrangian, but not conic.
- Homogeneous microlocal analysis: work in $T^*X \setminus 0$.

• Def. If (M, ω_M) and (N, ω_N) be two symplectic manifolds of the same dimension, then a C^{∞} map $\Phi : M \to N$ is a canonical transformation if $\Phi^*\omega_N = \omega_M$

•
$$
\Phi^* \omega(V_1, \ldots V_k) = \omega(\Phi(x))(D\Phi(V_1), \ldots D\Phi(V_k))
$$

Since ω_M nondeg, this \implies Φ is a local diffeomorphism.

Ex. A diffeom $\chi: X^n \to Y^n$ induces a canonical transformation, $\Phi: T^*X^n \longrightarrow T^*Y^n$,

$$
\Phi(x,\xi) = (\chi(x), ((D\chi)^{-1})^t(\xi))
$$

• Def A canonical graph is the graph of a canonical transformation.

Conic Lagrangian manifolds

- Prop. If $Y \subset X$ is smooth, then its conormal bundle $N^*Y \setminus 0$ is a conic Lagrangian in $T^*X\setminus{\mathbf{0}}$.
- Thm. Any conic lagrangian Λ can be microlocally parametrized by a nondegenerate phase function ϕ . I.e., $\forall \lambda_0 = (x_0, \xi_0) \in \Lambda$, $\exists \phi$, a nondeg phase on a conic nhood of $(x_0,\theta_0)\in X\times ({\mathbb R}^{N_0}\setminus{\mathbf 0}),$ s.t. $\Lambda = \Lambda_{\phi}$ near λ_{0} .

Sketch of pf. (i) If projection $(x, \xi) \rightarrow \xi$, is a submersion near λ_0 , then microlocally Λ has form $\big\{(x,\xi): x=\frac{\partial H}{\partial \xi}\big\}$, with $H(\xi)$ homog degree 1 and then $\phi = x \cdot \xi - H(\xi) \rightsquigarrow \Lambda$. (ii) Show (i) holds after a suitable quadratic change of coordinates.

• Note: A conic Lagrangian need not be of the form N^*Y for some smooth Y . For $H(\xi)=\frac{\xi_1^3}{\xi_2^2}$ above, Λ_ϕ is the closure of the conormal bundle of the smooth pts of the curve: $(\frac{x_1}{3})^3 = (\frac{x_2}{2})^2$.

Fourier integral distributions: Definition

- $\bullet\,$ For $\phi(x,\theta)$ a nondeg phase, $Crit_\phi:=\big\{(x,\theta);d_\theta\phi=0\big\}$ and $h: Crit_{\phi} \to T^*X; h(x, \theta) := (x, d_x \phi(x, \theta)),$ $h(Crit_{\phi}) = \Lambda_{\phi} = \{(x, d_x\phi); (x, \theta) \in C_{\phi}\}\$
- Prop. Λ_{ϕ} is a conic Lagrangian submanifold. Pf. In fact, the canonical 1-form $\sigma = \xi \cdot dx = d_x \phi \cdot dx = d\phi - d_\theta \phi \cdot d\theta = 0$ on Λ_ϕ
- Def. The class $I^m(X; \Lambda) \subset \mathcal{D}'(X)$ of Fourier integral distributions of order m associated with Λ consists of all locally finite sums of

$$
u_{\phi} = \int_{\mathbb{R}^{N_{\phi}}} e^{i\phi(x,\theta)} a(x,\theta) d\theta, a \in S_{1,0}^{m + \frac{\dim X}{4} - \frac{N_{\phi}}{2}}(X \times \mathbb{R}^{N_{\phi}})
$$

over all ϕ microlocally parametrizing $\Lambda_{\phi} \subseteq \Lambda$.

• Recall: $WF(u_{\phi}) \subseteq \Lambda_{\phi} \subseteq \Lambda$

Fourier integral distributions: Examples

• Ex. Conormal distributions are Fourier integral distributions: For

$$
Y = \{ \phi_1(x) = \dots = \phi_k(x) = 0 \},
$$

$$
u(x) = \int e^{i\Sigma_{j=1}^k \theta_j \phi_j(x)} a(x, \theta) d\theta,
$$

\n- \n
$$
\phi(x,\theta) := \sum_{j=1}^{k} \theta_j \phi_j(x)
$$
 is homog of deg 1\n
\n- \n $d\phi = \left((\phi_1(x), \ldots, \phi_k(x)), \sum \theta_j d\phi_j(x) \right) \neq (0,0)$ \n
\n- \n is nondeg since\n $\{d(\phi_j(x))\}$ lin indep\n
\n- \n $\Lambda_{\phi} = \left\{ (x, \sum \theta_i d\phi_j(x)) : x \in Y, \theta \in \mathbb{R}^k \right\} \setminus \mathbf{0} = N^*Y \setminus \mathbf{0}$ \n
\n

Fourier integral distributions: Examples

- $T_1 = \Psi$ DO, Schwartz kernel: $K_{T_1}(x,y) = \int e^{i(x-y)\cdot \theta} a(x,y,\theta) d\theta$
- \bullet $T_2 =$ pull back by χ : $K_{T_2}(x,y) = \int e^{i(\chi(x)-y)\cdot\theta} \, a(x,y,\theta) \, d\theta$
- \bullet $T_3 =$ Radon transform: $K_{T_3}(\omega, s, y) = \int e^{i(y \cdot \omega s) \theta} \, 1(s, y, \theta) \, d\theta$
- \bullet $T_4 =$ spherical mean operator: $K_{T_4}(x,y) = \int e^{i(|x-y|-t)\theta} \, 1(\theta) \, d\theta$
- \bullet $T_5 =$ Melrose-Taylor transf: $K_{T_5}(\omega, t, y, s) = \int e^{i((t-s-y \cdot \omega)\theta)}\, 1(\theta)\, d\theta$
- Thm. For any two phase functions parametrizing the same Lagrangian, $\Lambda_{\phi} = \Lambda_{\tilde{\phi}}$, there is a chain of operations of the following types which transforms ϕ to $\dot{\phi}$.
- 1) Adding variables: $\hat{\phi}(x,\theta,\sigma) := \phi + \frac{1}{2}$ 2 σ^2 $\frac{\sigma^2}{|\theta|}$ a nondeg phase function
- 2) Reducing variables: stationary phase.
- 3) Conic change of variables: $\tilde{\theta}(x,\theta)$ and $\tilde{\phi} = \phi(x,\tilde{\theta}(x,\theta))$

 $Crit_{\tilde{\phi}} = \{(x, \theta) : d_{\theta}\tilde{\theta} = 0\} = \{(x, \theta) : d_{\theta}\phi d_{\theta}\tilde{\theta} = 0\} = Crit_{\phi}$

$$
\Lambda_{\tilde{\phi}} = \{(x, d_x \tilde{\phi})\} = \{(x, d_x \phi + d_{\theta} \phi d_x \tilde{\phi})\} = \Lambda_{\phi}
$$

Then $\int e^{i\phi(x,\theta)}a(x,\theta)d\theta = \int e^{i\tilde{\phi}(x,\tilde{\theta})}\tilde{a}(x,\tilde{\theta})d\tilde{\theta}.$

Fourier integral operators (FIOs): Definition

• On $T^*(X\times Y)$ the natural symplectic form is $\omega_X+\omega_Y$

But on $T^*X \times T^*Y$ the natural symplectic form is $\omega_X - \omega_Y$

● Def. A conic Lagrangian $C\subset \big((T^*X\setminus 0)\times (T^*Y\setminus 0),\, \omega_X-\omega_Y\big)$ is called a canonical relation.

 $C' := \{(x, \xi, y, -\eta)\}$ is then a Lagrangian w.r.t. $\omega_X + \omega_Y$, and v.v.

• Def. Let $C \subset (T^*X \setminus 0) \times (T^*Y \setminus 0)$ be a closed, conic canonical relation. A Fourier integral operator associated to C is an operator $F: \mathcal{E}'(Y) \to \mathcal{D}'(X)$ whose Schwartz kernel $K_F \in I^m(X \times Y; C').$ The class of all such is denoted by $I^m(X,Y;C)$.

Fourier integral operators (FIOs)

 \bullet Thus, an FIO in $I^m(X,Y;C)$ is a locally finite sum of

$$
Ff(x) = \int e^{i\phi(x,y,\theta)} a(x,y,\theta) f(y) d\theta dy,
$$

with
$$
a \in S_{1,0}^{m + \frac{\dim X + \dim Y}{4} - \frac{N}{2}}(X \times Y \times \mathbb{R}^N)
$$
.

•
$$
C = \Lambda_{\phi} = \{(x, d_x \phi; y, -d_y \phi) : d_{\theta} \phi = 0\}
$$

• Ex. If $X = Y, C = \Delta_{T^*X} = graph(Id_{T^*X})$, then

$$
I^m(X, X; C) = \Psi^m(X).
$$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º 19 / 29

Fourier integral operators: Examples

•
$$
T_2 = \text{pull back: } C = \{(x, \chi'(x)\theta; y, \theta) : \chi(x) = y\}
$$

- T_3 = Radon transf: $C = \{(\omega, s, \theta y, -\theta; y, -\theta \omega) : s = y \cdot \omega\}$
- T_4 = spherical mean operator:

$$
C = \Big\{ \big(x, \theta \frac{x-y}{|x-y|}; y, \theta \frac{x-y}{|x-y|} \big): |x-y| = t, \, \theta \in \mathbb{R} \setminus 0 \Big\}
$$

• T_5 = Melrose-Taylor tr: $C = \{(t, y, \theta, -\theta\omega; s, \omega, \theta, \theta y); t = s + y \cdot \omega\}$

• But: for $T_6 =$ Half-wave op. for $t \in \mathbb{R}$ fixed,

$$
C = \{(x, \theta; y, \theta - d_y p(y, \theta)) : x - y + t d_{\theta} p(y, \theta) = 0\}
$$

need not be conormal

Geometry of canonical relations \leftrightarrow structure of **projections**

•
$$
C \subset (T^*X \setminus 0) \times (T^*Y \setminus 0)
$$

\n
$$
\begin{array}{ccc}\n & \pi_L & \pi_R \\
\swarrow & & \searrow \\
T^*X \setminus 0 & & T^*Y \setminus 0\n\end{array}
$$

- Note that $\dim(T^*X) = 2n_X$, $\dim(T^*Y) = 2n_Y$, $\dim(C) = n_X + n_Y$.
- Prop. At any point $c_0 \in C$, corank $(D\pi_L)$ = corank $(D\pi_R)$.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇ 21 / 29

- Def. C is nondegenerate if one, hence both, projections have maximal rank everywhere.
- Prop. Suppose C is nondegenerate. (i) If dim $X=$ dim Y, then both π_L , π_R are local diffeoms, and C is a **local canonical graph.** (ii) If dim (X) > dim (Y) , then π_L is an **immersion** and π_R is a submersion.

We say that the **Bolker condition** is satisfied if, in addition, $\pi_L: C \to T^*X$ is globally injective.

Fourier integral operators: Radon transform

$$
\phi(\omega,s,y;\theta)=(y\cdot \omega-s)\theta\text{ on }(\mathbb{S}^{n-1}\times \mathbb{R}\times \mathbb{R}^n)\times (\mathbb{R}\setminus 0)
$$

$$
\sim C_3 = \left\{ (\omega, y \cdot \omega, \theta y, -\theta; y, -\theta \omega) : \omega \in \mathbb{S}^{n-1}, y \in \mathbb{R}^n, \theta \in \mathbb{R} \setminus 0 \right\}
$$

Coordinates on $C_3: \omega \in \mathbb{S}^{n-1}, \, y \in \mathbb{R}^n, \, \theta \in \mathbb{R} \setminus 0$

•
$$
\pi_L(y, \theta, \omega) = (\omega, y \cdot \omega, -\theta y, \theta)
$$
,

$$
\bullet\ \pi_R(y,\theta,\omega)=(y,-\theta\omega)
$$

rank $(D\pi_R)=n+$ rank $\big(\frac{D(\eta)}{D(\omega,\theta)}\big)=2n=$ maximal \implies

 π_L , π_R diffeomorphisms, C_3 local canonical graph; π_L is 1-1, π_R is 2-1

- $C_4 = \{(x, \xi, x t\frac{\xi}{|\xi}$ $(\frac{\xi}{|\xi|}, \xi) : x \in \mathbb{R}^n, \xi \in \mathbb{R}^n \setminus 0$
- $\pi_L(x,\xi) = (x,\xi)$,
- $\pi_R(x,\xi) = (x t\frac{\xi}{|\xi|})$ $\frac{\xi}{|\xi|}, \xi)$
- π_L , π_R are diffeomorphisms, C_4 is a canonical graph

Fourier integral operators: Solution of the wave eq

• $\phi(x, y, \theta, t) = (x - y) \cdot \theta + t | \theta |, x, y \in \mathbb{R}^n, t \in \mathbb{R} \setminus 0, \theta \in \mathbb{R}^n \setminus 0$

25 / 29

K ロ K x 伊 K K ミ K K ミ K ミ H Y Q Q Q

- $C = \{(x, t, \theta, |\theta|; y, \theta) : x y + t \frac{\theta}{|\theta|} = 0, t \neq 0\}$
- $\pi_L(x, t, \theta) = (x, t, \theta, |\theta|)$
- $\pi_R(x, t, \theta) = (x y + t \frac{\theta}{\theta})$ $\frac{\theta}{|\theta|}, \theta)$
- max rank, π_L a immersion, 1-1, π_R a submersion

Estimates for nondegenerate FIOs

• Thm. (Hörmander) If $C \subset (T^*X \setminus 0) \times (T^*Y \setminus 0)$ is a nondegenerate canonical relation and $F\in I^{m-\frac{|d_X-d_Y|}{4}}(X,Y;C)$, then $F: H^s_{comp}(Y) \to H^{s-m}_{loc}(X)$.

• Radon transfer:
$$
T_3 \in I^{-\frac{n-1}{2}}(C_3) \implies T_3: H^s_{comp} \to H^{s+\frac{n-1}{2}}_{loc}
$$

• Spher means: $T_4 \in I^{-\frac{n-1}{2}}(C_4) \implies T_4 : H^s_{comp} \to H^{s+\frac{n-1}{2}}_{loc}$

26 / 29

メロトメ 御 トメ 重 トメ 重 トー 重

• Soln of WE: $T\in I^{-\frac{1}{4}}(C), T:H^s_{comp}\to H^s_{loc}$

Inverse problems in seismology

surface (source) pressure field: data (receiver)

 $c(x_1, x_2, x_3)$: subsurface (image)

- F : image \rightarrow data: forward operator
- Wave equation:

$$
(*)\frac{1}{c^2(x)}\frac{\partial^2 p}{\partial t^2}(x,t) - \triangle p(x,t) = \delta(t)\delta(x-s)
$$

$$
p(x,t) = 0, t < 0
$$

• $p(x, t)$ is the pressure field resulting from a pulse at the source s • $c(x)$ = velocity field independent of directi[on](#page-25-0)

27 / 29

$$
\bullet\ c=c_0+\delta c
$$

•
$$
p = p_0 + \delta p
$$

•
$$
(**) \frac{1}{c_0^2(x)} \frac{\partial^2(\delta p)}{\partial t^2}(x,t) - \Delta(\delta p)(x,t) = \frac{\partial^2 p_0}{\partial t^2} \frac{2(\delta c)}{c_0^3}
$$

•
$$
\delta p = 0, t < 0
$$

•
$$
F: \delta c \longrightarrow \delta p|_{\Sigma \times (0,T)}
$$

- Rakesh: F is an FIO
- to find the image we use F^*
- Under the travel time injectivity cond (Bolker cond), F^*F is a Ψ DO.
- If background ray geometry has caustics of at worst fold type (map $(s, t) \rightarrow x(s, t)$ has fold singularities, single source \implies
- $\bullet \ \ C$ is a two sided fold and $C^t \circ C = \Delta \cup C_1$ where C_1 is another two sided fold (Melrose-Taylor)
- Thm. (F. Nolan) If $F \in I^m(C)$ then $F^*F \in I^{2m,0}(\Delta, C_1)$.