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Overview of Lecture 2

• Conormal distributions (review)

• Nondegenerate phase functions

• Symplectic geometry, Lagrangians and canonical relations

• Fourier integral (Lagrangian) distributions

• Fourier integral operators (FIOs) and estimates

• Application: seismic imaging
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Conormal distributions (review)

• Y = {x ∈ Xn : φ1(x) = φ2(x) = · · · = φk(x) = 0}, {dφj}kj=1 lin ind

N∗Y = {(x, ξ) ∈ T ∗X : x ∈ Y, ξ = Σk
j=1θjdφj(x), θ ∈ Rk}

Im(X;Y ) =
{
u(x) =

∫
Rk
ei[Σ

k
j=1θjφj(x)] a(x, θ) dθ, a ∈ Sm1,0(Rn×Rk)

}
• WF(u) ⊆ N∗Y \ 0

• Phase function φ(x, θ) = Σk
j=1θjφj(x) on X × Rk is linear.
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Nondegenerate phase functions

• Def. φ(x, θ) is a phase function on X × (RN \ 0) if it is smooth,
R-valued, homog of degree 1 in θ and

(dxφ, dθφ) 6= (0, 0).

• THM. If a ∈ Sm1,0(X × RN ), then u =
∫
RN e

iφ(x,θ) a(x, θ) dθ ∈ D′(X)

then WF (u) ⊆
{

(x, dxφ(x, θ)) : dθφ(x, θ) = 0
}

• Def. φ is nondegenerate if dx,θ(
∂φ
∂θ1

), ...., dx,θ(
∂φ
∂θN

) lin indep on

Critφ :=
{

(x, θ); dθφ = 0
}
⊂ X × (RN \ 0).
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Nondegenerate phase functions

• φ(x, θ) nondegenerate ⇐⇒

rank
[
d2
xθφ, d

2
θθφ
]

= N, ∀(x, θ) ∈ Critφ

• Prop 1. φ nondeg =⇒ Critφ is a closed, conic submfld of dim n.
Furthermore, the map h : Critφ → T ∗X \ 0,

h(x, θ) = (x, dxφ(x, θ)),

is an immersion, and h(Critφ) = Λφ = a conic Lagrangian submfld
of T ∗X \ 0 (to be defined).

• φ is said to parametrize Λφ.
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Thm: WF of oscillatory integrals

Let (x0, ξ0) ∈ T ∗X \ Λφ, ψ(x) ∈ D(X) supported in nhood of x0

• ψ̂u(ξ) =
∫ ∫

ei(φ(x,θ)−x·ξ)a(x, θ)ψ(x) dθ dx,

• Form vec fld near (x0, ξ0): L = 1
|dxφ−ξ|2

∑
j(dxjφ− ξj)∂xj

=⇒ L(ei(φ(x,θ)−x·ξ)) = ei(φ(x,θ)−x·ξ)

• |dxφ(x, θ)− ξ| ≥ c(|ξ|+ |θ|) on supp(a · ψ), can integrate by parts

=⇒ ψ̂u rapidly decreasing on conic nhood of ξ0

• Thus, (x0, ξ0) /∈ WF(u).
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Symplectic geometry: linear algebra

• Def. A symplectic vector space is a pair (V, ω), with ω a bilinear,
nondegenerate, skew-symmetric form on V .

• If V is finite dim, dim(V ) is necessarily even, say dim(V ) = 2n.

• Ex. V = R2 with the area form dx ∧ dy

• Ex. V = R2n = {(x1, . . . , xn, y1, . . . , yn)}, ω =
∑
dyj ∧ dxj

• ω((x, y); (x′, y′)) = 1
2

∑
(xiy

′
i − x′iyi)
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Symplectic geometry: linear algebra

• Def. Let (V, ω) be symplectic and L ⊆ V a linear subsp. Then

(i) Lω := {v ∈ V : ω(u, v) = 0, ∀u ∈ L},
and dim(Lω) = dim(V )− dim(L) since ω nondegenerate

(ii) L is isotropic if L ⊆ Lω, i.e., ω|L×L ≡ 0

(iii) L is co-isotropic (involutive) if Lω ⊆ L

(iv) L is Lagrangian if L = Lω ( =⇒ dim(L) = 1
2dim(V ) )

• Ex. dim(L) = 1 =⇒ isotropic, codim(L) = 1 =⇒ co-isotropic.

Ex. dim(V ) = 2 =⇒ any 1-dim subspace is Lagrangian

Ex. In R2n, L = Rn × {0} and {0} × Rn are Lagrangian
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Symplectic geometry: manifolds

• Ex. Cotangent bundle T ∗X of a smooth Xn

• Local coordinates (x1, . . . , xn) on X, induce local coords
(x1, . . . xn, u1, . . . un) on TX, (x1, x2, . . . xn, ξ1, ξ2, . . . ξn) on T ∗X

• If u ∈ TxX, then u =
∑
ui

∂
∂xi

• If ξ ∈ T ∗xX, then ξ =
∑
ξidxi

• Canonical 1-form on T ∗X: σ := ξdx =
∑

i ξidxi, coord-indep.

• Canonical 2-form: ω := dσ = dξ ∧ dx =
∑
dξi ∧ dxi, ” ”

t = (tx, tξ), s = (sx, sξ) then ω(s, t) = 1
2(< tξ, sx > − < sξ, tx >)

ω is bilinear, skew-symmetric, nondegenerate, closed
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Symplectic geometry: manifolds

• Def. (M,ω) is a symplectic manifold if ω is a closed diff 2-form on
M and ω|TxM is symplectic for all x ∈M . Thus, dim(M) = 2n and
ωn is a volume form orienting M .

Ex. (T ∗Rn,
∑
dξi ∧ dxi), (Cn,

∑
dyi ∧ dxi), (T ∗X,ω)

• (T ∗X,ω) has a bit more structure: it is exact (since ω = dσ) and is
conic, since there is a nice action of R+ on T ∗X \ 0, (x, ξ)→ (x, tξ).

• Def. Γ ⊂ T ∗X \ 0 is conic if (x, ξ) ∈ Γ then (x, tξ) ∈ Γ,∀t.

Ex. If P (x,D) ∈ Ψm
cl (X) with principal symbol pm(x, ξ), then the

characteristic variety of P ,

ΣP :=
{

(x, ξ) ∈ T ∗X \ 0 : pm(x, ξ) = 0
}

is closed, conic.
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Lagrangian manifolds

• Def. Let (M,ω) be a symplectic manifold and L ⊂M a smooth
submanifold. Then L is isotropic/co-isotropic/Lagrangian, resp.,
if TxL ≤ TxM is isotropic/co-isotropic/Lagrangian, ∀x ∈ L.

{ Lagrangian submanflds } = { co-isotropic } ∩ { isotropic }

• Prop. L is Lagrangian iff ω|L = 0 and dim(L) = 1
2 dim(M).

• Ex. If f ∈ C∞R (X), then Λf :=
{

(x, df(x)) : x ∈ X
}
⊂ (T ∗X,ω)

is Lagrangian, but not conic

• ω|Λf = 0,⇐⇒ fxixj = fxjxi

• zero-section 0 = {(x, 0) : x ∈ X} is Lagrangian, but not conic.

• Homogeneous microlocal analysis: work in T ∗X \ 0.
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Canonical transformation

• Def. If (M,ωM ) and (N,ωN ) be two symplectic manifolds of
the same dimension, then a C∞ map Φ : M → N is a canonical
transformation if Φ∗ωN = ωM

• Φ∗ω(V1, . . . Vk) = ω(Φ(x))(DΦ(V1), . . . DΦ(Vk))

Since ωM nondeg, this =⇒ Φ is a local diffeomorphism.

Ex. A diffeom χ : Xn → Y n induces a canonical transformation,
Φ : T ∗Xn −→ T ∗Y n,

Φ(x, ξ) =
(
χ(x), ((Dχ)−1)t(ξ)

)
• Def A canonical graph is the graph of a canonical transformation.
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Conic Lagrangian manifolds

• Prop. If Y ⊂ X is smooth, then its conormal bundle N∗Y \ 0 is a
conic Lagrangian in T ∗X \ 0.

• Thm. Any conic lagrangian Λ can be microlocally parametrized by a
nondegenerate phase function φ. I.e., ∀λ0 = (x0, ξ0) ∈ Λ, ∃φ,
a nondeg phase on a conic nhood of (x0, θ0) ∈ X × (RN0 \ 0),
s.t. Λ = Λφ near λ0.

Sketch of pf. (i) If projection (x, ξ)→ ξ, is a submersion near λ0,
then microlocally Λ has form

{
(x, ξ) : x = ∂H

∂ξ

}
, with H(ξ) homog

degree 1 and then φ = x · ξ −H(ξ) ; Λ.
(ii) Show (i) holds after a suitable quadratic change of coordinates.

• Note: A conic Lagrangian need not be of the form N∗Y for some

smooth Y . For H(ξ) =
ξ31
ξ22

above, Λφ is the closure of the conormal

bundle of the smooth pts of the curve: (x13 )3 = (x22 )2.

13 / 29



Fourier integral distributions: Definition

• For φ(x, θ) a nondeg phase, Critφ :=
{

(x, θ); dθφ = 0
}

and h : Critφ → T ∗X; h(x, θ) := (x, dxφ(x, θ)),

h(Critφ) = Λφ = {(x, dxφ); (x, θ) ∈ Cφ}

• Prop. Λφ is a conic Lagrangian submanifold. Pf. In fact, the
canonical 1-form σ = ξ · dx = dxφ · dx = dφ− dθφ · dθ = 0 on Λφ

• Def. The class Im(X; Λ) ⊂ D′(X) of Fourier integral distributions
of order m associated with Λ consists of all locally finite sums of

uφ =

∫
RNφ

eiφ(x,θ) a(x, θ) dθ, a ∈ Sm+ dimX
4
−
Nφ
2

1,0 (X × RNφ)

over all φ microlocally parametrizing Λφ ⊆ Λ.

• Recall: WF(uφ) ⊆ Λφ ⊆ Λ
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Fourier integral distributions: Examples

• Ex. Conormal distributions are Fourier integral distributions: For

Y =
{
φ1(x) = · · · = φk(x) = 0

}
,

u(x) =

∫
eiΣ

k
j=1θjφj(x) a(x, θ) dθ,

• φ(x, θ) := Σk
j=1θjφj(x) is homog of deg 1

dφ =
(

(φ1 (x) , . . . , φk (x)) ,
∑
θjdφj(x)

)
6= (0, 0)

is nondeg since {d(φj(x))} lin indep

• Λφ =
{

(x,
∑
θidφj(x)) : x ∈ Y, θ ∈ Rk

}
\ 0 = N∗Y \ 0
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Fourier integral distributions: Examples

• T1 = ΨDO, Schwartz kernel: KT1(x, y) =
∫
ei(x−y)·θ a(x, y, θ) dθ

• T2 = pull back by χ: KT2(x, y) =
∫
ei(χ(x)−y)·θ a(x, y, θ) dθ

• T3 = Radon transform: KT3(ω, s, y) =
∫
ei(y·ω−s)θ 1(s, y, θ) dθ

• T4 = spherical mean operator: KT4(x, y) =
∫
ei(|x−y|−t)θ 1(θ) dθ

• T5 = Melrose-Taylor transf: KT5(ω, t, y, s) =
∫
ei((t−s−y·ω)θ) 1(θ) dθ
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Invariance of phase function

• Thm. For any two phase functions parametrizing the same
Lagrangian, Λφ = Λφ̃, there is a chain of operations

of the following types which transforms φ to φ̃.

• 1) Adding variables: φ̂(x, θ, σ) := φ+ 1
2
σ2

|θ| a nondeg phase function

• 2) Reducing variables: stationary phase.

• 3) Conic change of variables: θ̃(x, θ) and φ̃ = φ(x, θ̃(x, θ))

Critφ̃ = {(x, θ) : dθθ̃ = 0} = {(x, θ) : dθφdθθ̃ = 0} = Critφ

Λφ̃ = {(x, dxφ̃)} = {(x, dxφ+ dθφdxφ̃)} = Λφ

Then
∫
eiφ(x,θ)a(x, θ)dθ =

∫
eiφ̃(x,θ̃)ã(x, θ̃)dθ̃.
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Fourier integral operators (FIOs): Definition

• On T ∗(X × Y ) the natural symplectic form is ωX+ωY

But on T ∗X × T ∗Y the natural symplectic form is ωX−ωY

• Def. A conic Lagrangian C ⊂
(
(T ∗X \ 0)× (T ∗Y \ 0), ωX − ωY

)
is

called a canonical relation.

C ′ := {(x, ξ, y,−η)} is then a Lagrangian w.r.t. ωX + ωY , and v.v.

• Def. Let C ⊂ (T ∗X \ 0)× (T ∗Y \ 0) be a closed, conic canonical
relation. A Fourier integral operator associated to C is an operator
F : E ′(Y )→ D′(X) whose Schwartz kernel KF ∈ Im(X × Y ;C ′).
The class of all such is denoted by Im(X,Y ;C).
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Fourier integral operators (FIOs)

• Thus, an FIO in Im(X,Y ;C) is a locally finite sum of

Ff(x) =

∫
eiφ(x,y,θ) a(x, y, θ)f(y) dθdy,

with a ∈ Sm+ dimX+dimY
4

−N
2

1,0 (X × Y × RN ).

• C = Λφ = {(x, dxφ; y,−dyφ) : dθφ = 0}

• Ex. If X = Y,C = ∆T ∗X = graph(IdT ∗X), then

Im(X,X;C) = Ψm(X).
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Fourier integral operators: Examples

• T2 = pull back: C = {(x, χ′(x)θ; y, θ) : χ(x) = y}

• T3 = Radon transf: C = {(ω, s, θy,−θ; y,−θω) : s = y · ω}

• T4 = spherical mean operator:

C =
{(
x, θ

x− y
|x− y|

; y, θ
x− y
|x− y|

)
: |x− y| = t, θ ∈ R \ 0

}
• T5 = Melrose-Taylor tr: C = {(t, y, θ,−θω; s, ω, θ, θy); t = s+ y · ω}

• But: for T6 = Half-wave op. for t ∈ R fixed,

C = {(x, θ; y, θ − dyp(y, θ)) : x− y + tdθp(y, θ) = 0}

need not be conormal
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Fourier integral operators: Projections

Geometry of canonical relations ↔ structure of projections

• C ⊂ (T ∗X \ 0)× (T ∗Y \ 0)

πL πR

↙ ↘
T ∗X \ 0 T ∗Y \ 0

• Note that dim(T ∗X) = 2nX , dim(T ∗Y ) = 2nY , dim(C) = nX + nY .

• Prop. At any point c0 ∈ C, corank(DπL) = corank(DπR).
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Fourier integral operators: Projections

• Def. C is nondegenerate if one, hence both, projections have
maximal rank everywhere.

• Prop. Suppose C is nondegenerate. (i) If dim X=dim Y , then both
πL, πR are local diffeoms, and C is a local canonical graph.

(ii) If dim(X) > dim(Y ), then πL is an immersion and πR is a
submersion.

We say that the Bolker condition is satisfied if, in addition,
πL : C → T ∗X is globally injective.
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Fourier integral operators: Radon transform

φ(ω, s, y; θ) = (y · ω − s)θ on (Sn−1 × R× Rn)× (R \ 0)

; C3 =
{

(ω, y · ω, θy,−θ; y,−θω) : ω ∈ Sn−1, y ∈ Rn, θ ∈ R \ 0
}

Coordinates on C3 : ω ∈ Sn−1, y ∈ Rn, θ ∈ R \ 0

• πL(y, θ, ω) = (ω, y · ω,−θy, θ),

• πR(y, θ, ω) = (y,−θω)

rank(DπR) = n+rank
( D(η)
D(ω, θ)

)
= 2n = maximal =⇒

πL, πR diffeomorphisms, C3 local canonical graph; πL is 1-1, πR is 2-1

23 / 29



Fourier integral operators: Spherical mean operator

• C4 = {(x, ξ, x− t ξ|ξ| , ξ) : x ∈ Rn, ξ ∈ Rn \ 0}

• πL(x, ξ) = (x, ξ),

• πR(x, ξ) = (x− t ξ|ξ| , ξ)

• πL, πR are diffeomorphisms, C4 is a canonical graph
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Fourier integral operators: Solution of the wave eq

• φ(x, y, θ, t) = (x− y) · θ + t|θ|, x, y ∈ Rn, t ∈ R \ 0, θ ∈ Rn \ 0

• C = {(x, t, θ, |θ|; y, θ) : x− y + t θ|θ| = 0, t 6= 0}

• πL(x, t, θ) = (x, t, θ, |θ|)

• πR(x, t, θ) = (x− y + t θ|θ| , θ)

• max rank, πL a immersion, 1-1, πR a submersion
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Estimates for nondegenerate FIOs

• Thm. (Hörmander) If C ⊂ (T ∗X \ 0)× (T ∗Y \ 0) is a

nondegenerate canonical relation and F ∈ Im−
|dX−dY |

4 (X,Y ;C),
then F : Hs

comp(Y )→ Hs−m
loc (X).

• Radon transf: T3 ∈ I−
n−1
2 (C3) =⇒ T3 : Hs

comp → H
s+n−1

2
loc

• Spher means: T4 ∈ I−
n−1
2 (C4) =⇒ T4 : Hs

comp → H
s+n−1

2
loc

• Soln of WE: T ∈ I−
1
4 (C), T : Hs

comp → Hs
loc
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Inverse problems in seismology

• surface (source) pressure field: data (receiver)

c(x1, x2, x3): subsurface (image)

• F : image → data: forward operator
• Wave equation:

(∗) 1
c2(x)

∂2p
∂t2

(x, t)−4p(x, t) = δ(t)δ(x− s)

p(x, t) = 0, t < 0

• p(x, t) is the pressure field resulting from a pulse at the source s
• c(x) = velocity field independent of direction
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Formal linearization

• c = c0 + δc

• p = p0 + δp

• (∗∗) 1
c20(x)

∂2(δp)
∂t2

(x, t)−4(δp)(x, t) = ∂2p0
∂t2

2(δc)
c30

• δp = 0, t < 0

• F : δc −→ δp|Σ×(0,T )
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Analysis

• Rakesh: F is an FIO

• to find the image we use F ∗

• Under the travel time injectivity cond (Bolker cond), F ∗F is a ΨDO.

• If background ray geometry has caustics of at worst fold type
(map (s, t)→ x(s, t) has fold singularities, single source =⇒

• C is a two sided fold and Ct ◦ C = ∆ ∪ C1 where C1 is another two
sided fold (Melrose-Taylor)

• Thm. (F. - Nolan) If F ∈ Im(C) then F ∗F ∈ I2m,0(∆, C1).
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