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@ Symbol calculus

® Functional and composition calculus

©® Examples and applications

O Extensions and generalizations of FIO calculus

@® Readings for all three lectures
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Symbol calculus of Fourier integral distributions

For A C T*X™\ 0 a smooth conic Lagrangian,

I'™(X;A) = all locally finite sums of u € D'(X)

given by oscillatory integrals
u=u(a,o):= / @0 o(z,0)dh, ac 1.0
RN ’
with ¢(z,6) a nondegenerate phase on X" x (RV \ 0)
~ Critg .= {(z,0) : dop(x,6) = 0}

~ Ay = {(z,dy9) : (z,0) € Crity} C A.
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Symbol calculus of Fourier integral distributions

e Define n-form p4 on Crity by requiring

,u¢/\d(69)---/\d(aa;i):dazl---/\d:nn/\d91---/\9N

e If \; are local coord on Crity then pug = fdAy--- A dA,, with

dzy - Adzp Adby - Ay
A1 Addg Ad(SE) - Ad(5)

=

e To obtain an invariantly defined principal symbol, op.in(u), if

_ﬂ_i_ﬂ _ﬂ_i_ﬁ_l
CLO = [a‘crplté] 6 SI):LO 2 4/517?0 2 4 B

Def. The principal symbol o, (u) of u(a, ¢) is the push-forward of
the half-density a°, /fi; from Crity to A.
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Functional calculus: Adjoints

Suppose A € I"™(C; X,Y). What about (formal) A*? If

nX+nY

KA(IB,y) - / 6i¢(x’y79) a('xayve) d97 acS" 5+ )
RN
then
KA*(ya $) = KA(‘T7y)
nX+nY

:/ e @v0) g(z, y,0)db, Gesm -yt
RN

— A* € I'"™(C%;Y, X), where C! is the transpose relation.
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Composition calculus

Suppose Ay € I (C; X,Y), Ay € I"2(Cq;Y, Z) are properly supported.

e Q. Is A1 Az an FIO? No in general, but yes if we impose some
geometric conditions.

e Note
WFa Ay CWEA, o WF4, =WK(Ka,) o WF(Ka,)

C C1oCyC (T*X\0) x (T*Z\ 0)

Basic examples show C o (' need not be a smooth canonical
relation. However, under a transversality or clean intersection
condition, it is, and the operator theory follows the geometry.
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Transverse intersection

e Def. 51, So C M intersect transversally if T,,51 + 1,,5 = T,, M
for all m € 51N Sy. (Holds < N;51 NN, S = (0).)
Write S1M.Ss.

e Prop. If SiMSy, then
(i) S3:= S1 NSy is smooth;
(i) codim(S3) =codim(S;)+codim(S2); and
(iii) TS3 = T'S1 N TS, at all points.

e Ex. InR3: {2z =0}"{z =z}, but {z =0} fh{z = 2y}.
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Transverse intersection

e For C; C (T*X \0) x (T*Y' \0) and Cy C (T*Y \ 0) x (T*Z \ 0),

Cl OOZ = {(x7§>z7C) : 3(:’-/777) s.t. (%fayﬂ?) € Cl: (y777727C) € 02}
= (7(1 X 7T4)((Cl X Cg) N (T*X X Apsy X T*Z))

e To have a chance of A;As being an FIO associated with a smooth
canonical relation, need that the intersection set be smooth.

e One way to get this is to demand that the intersection be transverse.
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Transverse intersection calculus

e Thm. (Hormander) Suppose
Ay € I'™(C1;X,Y), Ay € I'"2(C9; Y, Z) are properly supported. If
C1 x Cy intersects T* X x Ap«y x T*Z transversally, then C1 0 Cy is
a smooth canonical relation and

A1 Ay € Im1+m2(01 o(y; X, Z)

o If either Cy or (3 is a local canonical graph, then A;A; is covered by
the rh calculus.

e In particular, I"(C; X,Y) is closed under composition on the right
with WO(Y") and on the left with W0(X).

e If C is a canonical graph and A € I"™(C; X,Y) is properly supported,
then A*A € ¥?™(Y), and A elliptic at (z0, &0, y0,70) =
A* A elliptic at (yo,m0)-
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Clean intersection calculus

e Def. Si, So C M intersect cleanly if (i) S3:= 51 NSy is smooth;
and T'S3 =T'S1 TSy at all points. The excess of the intersection is
e := codim(S7)+codim(S2)—codim(Ss) > 0.

Ex. S| = x-axis and Sy = y-axis in R?, with excess e = 2+2—-3 = 1.
Ex. S = z-axis and S = {y = x?} do not intersect cleanly in R2.

e Thm. (Duistermaat-Guillemin; Weinstein) If C; x C5 intersects
T*X x Ap«y x T*Z cleanly with excess e, then Cy o C5 is smooth

and
A1 Ay € T™HM245(C) 0 Cy; X, 7).
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Clean intersection calculus: flowouts

Ex. Let ¥ C T*X™\ 0 be a conic hypersurface.

e Y is automatically co-isotropic: (7'X)¥ C T'Y at all pts.

Microlocally, can write ¥ = {p(x,&) = 0}, p € CR°, homog of deg 1.

(T'¥)¥ =R - Hp, where H, is the Hamiltonian vector field of p,

0
Hy(z,§) = (dp(,£))” 2875]87:5]_87%875]

But H, € T'Y, since (dp, H,) = w(H,, H,) = 0 by skew-symmetry.

Thus, X is foliated by the integral curves of H,,, called
the bicharacteristic curves of ¥, which are nonradial if H), }f £ - O¢.
The curve passing through (z,&) € ¥ is denoted 2, ¢.

11/31



Clean intersection calculus: flowouts

e Def. The flowout relation of X,
Cs = {(z,&y,m) : (2,6) €%, (y,1) € Bue} C (T*X\0)x(T*X\0)

is a smooth, conic canonical relation.
Note: Cy; is degenerate. Dy, Dmr drop rank by 1 everywhere.

e (5 o Cy, covered by the clean intersection calc, with excess e = 1:
I™(C; X, X) o I"™(C; X, X) C I™Tm2+3(C; X, X)

e Results in a loss of 1/2 derivs on L2-based Sobolev spaces:

—m—1
Thm. I'"™(C; X, X): HS, (X)— H, " 2(X).

comp loc
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Clean intersection calculus: flowouts

o Flowout relations C's; describe the propagation of singularities of
solutions to Pu = f, where P(z, D) € ¥7}(X).

e Def. P(z,D) € ¥, is of real principal type if p(z,§) := prin(P) is
R-valued, d,¢p # (0,0) at ¥ = p~1(0), and no bicharacteristic =, ¢
of p is trapped over a compact set K CC X.

(In particular, there are no radial points.)

e Thm. (Duistermaat-Hérmander) If P(z, D) is RPT and Pu = f,
then WF(u) \ WF(f) is a union of maximally extended =, ¢.
Futhermore, there exists a two-sided parametrix @, 1QP =1— Ry and
PQ =1 — Ry with Ry, Ry € U°°(X), with Q € I27"(Cyx) away
from Ap«x.
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Applications: Egorov’s Theorem

Let ® : 7*Y \ 0 — 7% X \ O be a canonical transformation defined on
a conic nhood of (yp,7n0). Then C' := graph(®) is a canonical graph.

Let F € I°(C; X,Y) be an elliptic FIO, and G € I°(C%:; Y, X) a
parametrix (microlocal inverse mod C™), with C* = graph(®~1):

GF =1and FG=1 mod C*.

Thm. (Egorov) If P(z,D) € V™ (X), then FPG € ¥"(Y'), with

Oprin(FPG)(y,n) = oprin(P)(®(y, 1))

— Large literature on reducing ¥DO to normal forms, proving
propagation of singularities or local solvability.
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Applications: Generalized Radon transforms

Suppose Z C X™X x Y™ codim k. Consider

e Def. Z is a double fibration if rx : Z - X and 7y : Z — Y
are submersions. Then, Vz € X, y €Y,

Y, i=myny ({z}) C Y and XY := nxmy ' ({y}) C X are codim &

e Choice of smooth densities on X, Y, Z induces pair of generalized
Radon transforms, R : £'(Y) — D'(X) and R! : £'(X) — D'(Y),

Rf(z)= | f(y)dyand Rig(y)= [ f(z)dw.
Y. XY
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Applications: Generalized Radon transforms

Z is the incidence relation of a generalized Radon transform, R.

¢ Guillemin-Sternberg: Schwartz kernel of R = ¢z, which is a
conormal, hence Fourier integral distribution: Locally describe Z as

Z ={(z,y): ®1(z,y) =+ = p(x,y) = 0}.
e Writing 6z as shorthand for a smooth multiple of dgx (®),
dz(x,y) = / ¢l Xi=1 05%5(z.9) a(z,y)df, ac S?7O(X xY x R¥)
Rk

—
nyx+tny

R e 075777 (0 X, Y),

where
C=N*7"c (T*X\0) x (T*Y \ 0)

nx+ny —2k

and Rte I~ 1 (C4LY, X).
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Applications: Generalized Radon transforms

nX+ny—2k

e If C'is a canonical graph, then R*R € ¥ 2 (Y), elliptic if R is.
X nxt+ny —2k
e J parametrix ) € U~ 2 (Y), QR*R =1 mod C*, and
thus Rf determines f mod C*>®,Vf € £'(Y).
e Ex. Radon transform: Y =R", X = S"! x R,
Z={(w,s,y):s—w-z=0}.

n—1

R*Rf = cnf * |y|*™", which has inverse c,(—A) = .

The filtered backprojection inversion formulae for the Radon
transform,

f= (=) T R)RS = caR* (10, )RS,

thus generalize ( mod C*) to a wide variety of GRTs.
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Applications: Generalized Radon transforms

Suppose nx > ny (R is overdetermined).
dim(T*X) = 2nx > dim(C) = nx + ny >dim(T*Y) = 2ny.

Then C = N*Z' is nondegen, i.e., 7, : C' — T*X has maximal rank,
iff D7y, is injective.

Clean intersection calculus applies to R*R, with excess e = nx — ny,
but to make sure that R*R is only a ¥DO, need C* o C C Arpsy.

Def. (Guillemin) R (or Z or C) satisfies the Bolker condition if, in
addition to Dy, : TC — T(T*X) being injective, the map

7r : C — T*X is injective. l.e., not only is 7y, infinitesimally 1-1,

it is globally 1-1. (Makes sense for general canonical relations.)
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Applications: Generalized Radon transforms

e Thm. (Guillemin-Sternberg) Suppose C' C (T*X \ 0) x (T*Y \ 0)
is a canonical relation satisfying the Bolker condition, and

(0 X,Y)

is elliptic and properly supported. Then F*F € ¥?™(Y), +elliptic.
Hence, u is determined mod C*°(Y') by Fumod C*(X),
Vu e E'(Y).

k_(k+1)(n k)—

e Ex. k-plane transform on R™: Ry, € I™ 2 (C M, », R™)

e Ex. (M"™, g) a Riemannian manifold without conjugate points has a
(2n — 2)-dimensional space G of geodesics. The X-ray transform on
M, defined by X f(~ f f ds, satisfies the Bolker condition,

X*X e =Y (M), and X f mod C* determines f mod C*°.
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An example where Bolker is violated

e X-ray transform on (M, g) = (S™, go)

o X eI 306, M) with C C (T*G\ 0) x (T*M \ 0) is
nondeg., but 7y, : C' — T*G is 2-1.

e Composition X* X is covered by clean intersection calc, but
X*X er'(A)yur i)

where I' is the graph of the canonical transf induced by antipodal
map, and X has a large kernel (all odd distributions).
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Paired Lagrangian distributions

e J need for distributions [operators] whose wavefront sets [relations]
are not a smooth Lagrangian [canonical relation]:

e Duistermaat-Hormander constructed parametrices () for RPT
operators P(x, D) have

WEqg C Apx U Cxy
where Cy, is the flowout of ¥X. A N Cyx cleanly with excess e =n — 1.

e Each of Ar«x, Uy is smooth, but their union is not, and K¢ is not
simply a sum in I (A) + I"2(Cy).
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Paired Lagrangian distributions

e Melrose-Uhlmann-Guillemin-Mendoza introduced classes of
Lagrangian-like distributions associated with pairs Ag, Ay C 7*X \ 0
which intersect cleanly in codimension £k =1,2,.... Denoted

PH(X; Mo, M), plER.

e Just as u € I"(A) can be characterized either as oscillatory integrals
or in terms of iterated regularity, I”! can be characterized either as

(i) oscillatory integrals with certain types of product type symbols; or

(ii) distributions satisfying iterated regularity with respect to P; € ¥,
with opi, vanishing on Ag U A;.

o If u € IP!(Ag, A1) then microlocally away from Ag N Ap,

u € Ip+l(A0 \ Al) and u € Ip(Al \AO)
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Paired Lagrangian operators

o If Cp, C1 C (T*X \ 0) x (T*Y \ 0) are a cleanly intersecting pair,
then

IPY(Cy,C1; X,Y) = operators T with K7 € IPH(C), CF).
e When Y = X, Cy = Ap«x: “WDO with singular symbols”.
e IP!_operators arise in several applications:
(i) Parametrices for RPT: Q € I%_m’_%(A,CE) [Melrose-Uhlmann]
(ii) Parametrices for restricted X-ray transforms [G.- Uhlmann];

(iii) Linearized inverse probs for seismic, radar imaging [Nolan, Felea];

(iv) Composing FIOs outside the clean intersection calculus
[G.-Uhlmann, Felea].
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Paired Lagrangian operators

o Ex. z = (2/,2"), Co = Ap+gn, C1 = N*{2' —y' =0}
e Def. 1. K(z,y) fe@((x* y') € +(z" —y")E") alz, €)de'de”,
10902,0%al < capy(1+ [€] + (€)™ 1811 + |&7])m ~1

o Def. 2. lterated regularity: u € Ip’l(Co,Cl) if PLP,..PNK € H}°
where P; € U}, with o(P;) vanishing on Cy U C4
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Beyond the standard FIO calculus

¢ Recall: Melrose-Taylor Radon transform (75 from Lec. 1),
Ryt : D'(0Q x R) — D'(S*~! x R), given by

Rarr(F)(w,8) = Rarr (F)(w, 1) = / /{ S
Y-w=t—sCIX

o Ry € I-(»=D/2(C), with C not a canonical graph. Both 7y, 7x
have degeneracies of Whitney fold type. Such C called folding
canonical relations. T € I(C) lose 1/6 deriv on L2

e M-T already observed that the composition C! o C'is not a smooth
canonical relation, but C Ap«(gaxr) U C1, where Cy intersects A
cleanly in codim 1.

e Thm. (Nolan-Felea). If C is a folding canonical relation and
Fe Im(C,X, Y) then F*F € Izm’O(AT*y,Cl).
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Basic references: Classic articles

L. Hormander, Fourier integral operators, |. Acta Math. 127 (1971),
79-183.

J.J. Duistermaat and L. Hormander, Fourier integral operators, Il
Acta Math. 128 (1972), 183-269.

JJ. Duistermaat and V. Guillemin, The spectrum of positive elliptic
operators and periodic bicharacteristics., Invent. Math. 29 (1975),
39-79.

Older papers of historical interest for introducing important ideas:
V. Maslov, Y. Egorov, ...
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Basic references: Books

J. J. Duistermaat, Fourier integral operators, Progress in
Mathematics 130, Birkhauser Boston, Boston, MA, 1996.

A. Grigis and J. Sjostrand, Microlocal Analysis for Differential
Operators: An Introduction, London Mathematical Society Lecture
Notes 196, Cambridge Univ. Press, 1994.

F. Treves, Introduction to Pseudodifferential and Fourier Integral
Operators, Vol. 2, Plenum, New York, 1980.

L. Hérmander, The analysis of linear partial differential operators. IV.
Fourier integral operators, Grundlehren der Mathematischen
Wissenschaften 275, Springer-Verlag, Berlin, 1985. (reference)
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Symplectic geometry: Books

e A. Weinstein, Lectures on Symplectic Manifolds (Regional conference
series in mathematics), AMS, Providence, 1977.

e R. Berndt, An Introduction to Symplectic Geometry, Graduate
Studies in Mathematics 26, AMS, Providence, 2001.

e A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes
in Mathematics, Corr. 2nd edition, Springer, New York, 2008.
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Beyond the standard FIO calculus

e R. Melrose and M. Taylor, Near peak scattering and the corrected
Kirchhoff approximation for a convex obstacle, Adv. in Math. 55(3)
(1985), 242-315.

e R. Melrose, The wave equation for a hypoelliptic operator with
symplectic characteristics of codimension two, J. Analyse Math. 44
(1984/85), 134-182.

e A. Greenleaf and G. Uhlmann, Composition of some singular Fourier
integral operators and estimates for restricted X-ray transforms,
I. Ann. Inst. Fourier (Grenoble) 40(2) (1990), 443-466;
and Il. Duke Math. J. 64(3) (1991), 415-444.

e R. Felea, Composition of Fourier integral operators with fold and
blowdown singularities, Comm. P.D.E. 30 (2005), 1717-1740.

e R. Felea and A. Greenleaf, Fourier integral operators with open
umbrellas and seismic inversion for cusp caustics, Math. Research
Lett. 17 (2010), 867-886.
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Paired Lagrangian distributions and operators

e R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy
problem, Comm. Pure Appl. Math. 32 (1979) , 482-512.

e V. Guillemin and G. Uhlmann, Oscillatory integrals with singular
symbols, Duke Math. J. 48 (1981), 251-267.

o A. Greenleaf and G. Uhlmann, Estimates for singular Radon
transforms and pseudodifferential operators with singular symbols,
Jour. Func. Analysis 89 (1990), 202-232.
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Semiclassical FIOs

o M. Zworski, Semiclassical Analysis, Graduate Studies in Mathematics
138, AMS, Providence, 2012.

e V. Guillemin and S. Sternberg, Semi-Classical Analysis, International
Press, Cambridge, MA, 2013.
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