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Symbol calculus of Fourier integral distributions

For Λ ⊂ T ∗Xn \ 0 a smooth conic Lagrangian,

Im(X; Λ) = all locally finite sums of u ∈ D′(X)

given by oscillatory integrals

u = u(a, φ) :=

∫
RN

eiφ(x,θ) a(x, θ) dθ, a ∈ Sm−
N
2

+n
4

1,0

with φ(x, θ) a nondegenerate phase on Xn × (RN \ 0)

; Critφ := {(x, θ) : dθφ(x, θ) = 0}

; Λφ :=
{

(x, dxφ) : (x, θ) ∈ Critφ
}
⊂ Λ.
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Symbol calculus of Fourier integral distributions

• Define n-form µφ on Critφ by requiring

µφ ∧ d(
∂φ

∂θ1
) · · · ∧ d(

∂φ

∂θN
) = dx1 · · · ∧ dxn ∧ dθ1 · · · ∧ θN

• If λi are local coord on Critφ then µφ = fdλ1 · · · ∧ dλn, with

f =
dx1 · · · ∧ dxn ∧ dθ1 · · · ∧ θN

dλ1 · · · ∧ dλn ∧ d( ∂φ∂θ1 ) · · · ∧ d( ∂φ∂θn )

• To obtain an invariantly defined principal symbol, σprin(u), if

a0 :=
[
a|Critφ

]
∈ Sm−

N
2

+n
4

1,0 /S
m−N

2
+n

4
−1

1,0 ,

Def. The principal symbol σprin(u) of u(a, φ) is the push-forward of
the half-density a0√µφ from Critφ to Λ.
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Functional calculus: Adjoints

Suppose A ∈ Im(C;X,Y ). What about (formal) A∗? If

KA(x, y) =

∫
RN

eiφ(x,y,θ) a(x, y, θ) dθ, a ∈ Sm−
N
2

+
nX+nY

4 ,

then

KA∗(y, x) = KA(x, y)

=

∫
RN

e−iφ(x,y,θ) a(x, y, θ) dθ, a ∈ Sm−
N
2

+
nX+nY

4

=⇒ A∗ ∈ Im(Ct;Y,X), where Ct is the transpose relation.
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Composition calculus

Suppose A1 ∈ Im1(C1;X,Y ), A2 ∈ Im2(C2;Y,Z) are properly supported.

• Q. Is A1A2 an FIO? No in general, but yes if we impose some
geometric conditions.

• Note

WFA1A2 ⊆WFA1 ◦WFA2 = WK(KA1)′ ◦WF (KA2)′

⊆ C1 ◦ C2 ⊂ (T ∗X \ 0)× (T ∗Z \ 0)

Basic examples show C1 ◦ C2 need not be a smooth canonical
relation. However, under a transversality or clean intersection
condition, it is, and the operator theory follows the geometry.
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Transverse intersection

• Def. S1, S2 ⊂M intersect transversally if TmS1 + TmS2 = TmM
for all m ∈ S1 ∩ S2. (Holds ⇐⇒ N∗mS1 ∩N∗mS2 = (0).)
Write S1tS2.

• Prop. If S1tS2, then

(i) S3 := S1 ∩ S2 is smooth;

(ii) codim(S3) =codim(S1)+codim(S2); and

(iii) TS3 = TS1 ∩ TS2 at all points.

• Ex. In R3: {z = 0}t{z = x}, but {z = 0} 6t{z = xy}.
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Transverse intersection

• For C1 ⊂ (T ∗X \ 0)× (T ∗Y \ 0) and C2 ⊂ (T ∗Y \ 0)× (T ∗Z \ 0),

C1 ◦ C2 = {(x, ξ, z, ζ) : ∃(y, η) s.t. (x, ξ, y, η) ∈ C1, (y, η, z, ζ) ∈ C2}

= (π1 × π4)
(
(C1 × C2) ∩ (T ∗X ×∆T ∗Y × T ∗Z)

)
• To have a chance of A1A2 being an FIO associated with a smooth

canonical relation, need that the intersection set be smooth.

• One way to get this is to demand that the intersection be transverse.
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Transverse intersection calculus

• Thm. (Hörmander) Suppose
A1 ∈ Im1(C1;X,Y ), A2 ∈ Im2(C2;Y, Z) are properly supported. If
C1 ×C2 intersects T ∗X ×∆T ∗Y × T ∗Z transversally, then C1 ◦C2 is
a smooth canonical relation and

A1A2 ∈ Im1+m2(C1 ◦ C2;X,Z)

• If either C1 or C2 is a local canonical graph, then A1A2 is covered by
the t calculus.

• In particular, Im(C;X,Y ) is closed under composition on the right
with Ψ0(Y ) and on the left with Ψ0(X).

• If C is a canonical graph and A ∈ Im(C;X,Y ) is properly supported,
then A∗A ∈ Ψ2m(Y ), and A elliptic at (x0, ξ0, y0, η0) =⇒
A∗A elliptic at (y0, η0).
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Clean intersection calculus

• Def. S1, S2 ⊂M intersect cleanly if (i) S3 := S1 ∩ S2 is smooth;
and TS3 = TS1 ∩ TS2 at all points. The excess of the intersection is
e := codim(S1)+codim(S2)−codim(S3) ≥ 0.

Ex. S1 = x-axis and S2 = y-axis in R3, with excess e = 2 + 2− 3 = 1.

Ex. S1 = x-axis and S2 = {y = x2} do not intersect cleanly in R2.

• Thm. (Duistermaat-Guillemin; Weinstein) If C1 × C2 intersects
T ∗X ×∆T ∗Y × T ∗Z cleanly with excess e, then C1 ◦ C2 is smooth
and

A1A2 ∈ Im1+m2+ e
2 (C1 ◦ C2;X,Z).
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Clean intersection calculus: flowouts

Ex. Let Σ ⊂ T ∗Xn \ 0 be a conic hypersurface.

• Σ is automatically co-isotropic: (TΣ)ω ⊂ TΣ at all pts.

• Microlocally, can write Σ = {p(x, ξ) = 0}, p ∈ C∞R , homog of deg 1.

• (TΣ)ω = R ·Hp, where Hp is the Hamiltonian vector field of p,

Hp(x, ξ) = (dp(x, ξ))ω =

n∑
j=1

∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

• But Hp ∈ TΣ, since 〈dp,Hp〉 = ω(Hp, Hp) = 0 by skew-symmetry.

• Thus, Σ is foliated by the integral curves of Hp, called
the bicharacteristic curves of Σ, which are nonradial if Hp ∦ ξ · ∂ξ.
The curve passing through (x, ξ) ∈ Σ is denoted Ξx,ξ.
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Clean intersection calculus: flowouts

• Def. The flowout relation of Σ,

CΣ =
{

(x, ξ, y, η) : (x, ξ) ∈ Σ, (y, η) ∈ Ξx,ξ
}
⊂ (T ∗X\0)×(T ∗X\0)

is a smooth, conic canonical relation.
Note: CΣ is degenerate. DπL, DπR drop rank by 1 everywhere.

• CΣ ◦ CΣ covered by the clean intersection calc, with excess e = 1:

Im1(C;X,X) ◦ Im2(C;X,X) ⊆ Im1+m2+ 1
2 (C;X,X)

• Results in a loss of 1/2 derivs on L2-based Sobolev spaces:

Thm. Im(C;X,X) : Hs
comp(X)→ H

s−m− 1
2

loc (X).
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Clean intersection calculus: flowouts

• Flowout relations CΣ describe the propagation of singularities of
solutions to Pu = f , where P (x,D) ∈ Ψm

cl (X).

• Def. P (x,D) ∈ Ψcl is of real principal type if p(x, ξ) := σprin(P ) is
R-valued, dx,ξp 6= (0, 0) at Σ = p−1(0), and no bicharacteristic Ξx,ξ
of p is trapped over a compact set K ⊂⊂ X.
(In particular, there are no radial points.)

• Thm. (Duistermaat-Hörmander) If P (x,D) is RPT and Pu = f ,
then WF (u) \WF (f) is a union of maximally extended Ξx,ξ.
Futhermore, there exists a two-sided parametrix Q, QP = I −R1 and
PQ = I −R2 with R1, R2 ∈ Ψ−∞(X), with Q ∈ I

1
2
−m(CΣ) away

from ∆T ∗X .
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Applications: Egorov’s Theorem

• Let Φ : T ∗Y \ 0→ T ∗X \ 0 be a canonical transformation defined on
a conic nhood of (y0, η0). Then C := graph(Φ) is a canonical graph.

• Let F ∈ I0(C;X,Y ) be an elliptic FIO, and G ∈ I0(Ct;Y,X) a
parametrix (microlocal inverse mod C∞), with Ct = graph(Φ−1):

GF ≡ I and FG ≡ I mod C∞.

• Thm. (Egorov) If P (x,D) ∈ Ψm(X), then FPG ∈ Ψm(Y ), with

σprin(FPG)(y, η) = σprin(P )(Φ(y, η))

• =⇒ Large literature on reducing ΨDO to normal forms, proving
propagation of singularities or local solvability.
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Applications: Generalized Radon transforms

Suppose Z ⊂ XnX × Y nY , codim k. Consider

πX Z πY

↙ ↘
X Y

• Def. Z is a double fibration if πX : Z → X and πY : Z → Y
are submersions. Then, ∀x ∈ X, y ∈ Y ,

Yx := πY π
−1
X ({x}) ⊂ Y and Xy := πXπ

−1
Y ({y}) ⊂ X are codim k

• Choice of smooth densities on X, Y, Z induces pair of generalized
Radon transforms, R : E ′(Y )→ D′(X) and Rt : E ′(X)→ D′(Y ),

Rf(x) =

∫
Yx

f(y) dy and Rtg(y) =

∫
Xy

f(x) dx.
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Applications: Generalized Radon transforms

Z is the incidence relation of a generalized Radon transform, R.

• Guillemin-Sternberg: Schwartz kernel of R = δZ , which is a
conormal, hence Fourier integral distribution: Locally describe Z as

Z =
{

(x, y) : Φ1(x, y) = · · · = Φk(x, y) = 0
}
.

• Writing δZ as shorthand for a smooth multiple of δRk
(
Φ
)
,

δZ(x, y) =

∫
Rk
ei

∑k
j=1 θjΦj(x,y) a(x, y) dθ, a ∈ S0

1,0(X × Y × Rk)

=⇒
R ∈ I0+ k

2
−nX+nY

4 (C;X,Y ),

where
C = N∗Z ′ ⊂ (T ∗X \ 0)× (T ∗Y \ 0)

and Rt ∈ I
nX+nY −2k

4 (Ct;Y,X).
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Applications: Generalized Radon transforms

• If C is a canonical graph, then R∗R ∈ Ψ
nX+nY −2k

2 (Y ), elliptic if R is.

• ∃ parametrix Q ∈ Ψ−
nX+nY −2k

2 (Y ), QR∗R ≡ I mod C∞, and
thus Rf determines f mod C∞, ∀f ∈ E ′(Y ).

• Ex. Radon transform: Y = Rn, X = Sn−1 × R,

Z =
{

(ω, s, y) : s− ω · x = 0
}
.

R∗Rf = cnf ∗ |y|1−n, which has inverse cn(−∆)
n−1
2 .

The filtered backprojection inversion formulae for the Radon
transform,

f = cn
(
(−∆)

n−1
2 R∗

)
Rf = cnR∗(|∂s|n−1)Rf,

thus generalize ( mod C∞) to a wide variety of GRTs.
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Applications: Generalized Radon transforms

• Suppose nX > nY (R is overdetermined).

dim(T ∗X) = 2nX > dim(C) = nX + nY > dim(T ∗Y ) = 2nY .

• Then C = N∗Z ′ is nondegen, i.e., πL : C → T ∗X has maximal rank,
iff DπL is injective.

• Clean intersection calculus applies to R∗R, with excess e = nX − nY ,
but to make sure that R∗R is only a ΨDO, need Ct ◦ C ⊆ ∆T ∗Y .

• Def. (Guillemin) R (or Z or C) satisfies the Bolker condition if, in
addition to DπL : TC → T (T ∗X) being injective, the map
πL : C → T ∗X is injective. I.e., not only is πL infinitesimally 1-1,
it is globally 1-1. (Makes sense for general canonical relations.)

18 / 31



Applications: Generalized Radon transforms

• Thm. (Guillemin-Sternberg) Suppose C ⊂ (T ∗X \ 0)× (T ∗Y \ 0)
is a canonical relation satisfying the Bolker condition, and

F ∈ Im−
nX−nY

4 (C;X,Y )

is elliptic and properly supported. Then F ∗F ∈ Ψ2m(Y ), +elliptic.

Hence, u is determined mod C∞(Y ) by Fumod C∞(X),
∀u ∈ E ′(Y ).

• Ex. k-plane transform on Rn: Rk,n ∈ I−
k
2
− (k+1)(n−k)−n

4 (C;Mk,n,Rn)

• Ex. (Mn, g) a Riemannian manifold without conjugate points has a
(2n− 2)-dimensional space G of geodesics. The X-ray transform on
M , defined by Xf(γ) =

∫
γ f ds, satisfies the Bolker condition,

X∗X ∈ Ψ−1(M), and Xf mod C∞ determines f mod C∞.
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An example where Bolker is violated

• X-ray transform on (M, g) = (Sn, g0)

• X ∈ I−
1
2
− (2n−2)−n

4 (C;G,M) with C ⊂ (T ∗G \ 0)× (T ∗M \ 0) is
nondeg., but πL : C → T ∗G is 2-1.

• Composition X∗X is covered by clean intersection calc, but

X∗X ∈ I−1(∆) ∪ I−1(Γ)

where Γ is the graph of the canonical transf induced by antipodal
map, and X has a large kernel (all odd distributions).
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Paired Lagrangian distributions

• ∃ need for distributions [operators] whose wavefront sets [relations]
are not a smooth Lagrangian [canonical relation]:

• Duistermaat-Hörmander constructed parametrices Q for RPT
operators P (x,D) have

WFQ ⊆ ∆T ∗X ∪ CΣ

where CΣ is the flowout of Σ. ∆ ∩ CΣ cleanly with excess e = n− 1.

• Each of ∆T ∗X , CΣ is smooth, but their union is not, and KQ is not
simply a sum in Im1(∆) + Im2(CΣ).
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Paired Lagrangian distributions

• Melrose-Uhlmann-Guillemin-Mendoza introduced classes of
Lagrangian-like distributions associated with pairs Λ0, Λ1 ⊂ T ∗X \ 0
which intersect cleanly in codimension k = 1, 2, . . . . Denoted

Ip,l(X; Λ0,Λ1), p, l ∈ R.

• Just as u ∈ Im(Λ) can be characterized either as oscillatory integrals
or in terms of iterated regularity, Ip,l can be characterized either as

(i) oscillatory integrals with certain types of product type symbols; or

(ii) distributions satisfying iterated regularity with respect to Pj ∈ Ψ1
cl

with σprin vanishing on Λ0 ∪ Λ1.

• If u ∈ Ip,l(Λ0,Λ1) then microlocally away from Λ0 ∩ Λ1,

u ∈ Ip+l(Λ0 \ Λ1) and u ∈ Ip(Λ1 \ Λ0).
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Paired Lagrangian operators

• If C0, C1 ⊂ (T ∗X \ 0)× (T ∗Y \ 0) are a cleanly intersecting pair,
then

Ip,l(C0, C1;X,Y ) = operators T with KT ∈ Ip,l(C ′0, C ′1).

• When Y = X, C0 = ∆T ∗X : “ΨDO with singular symbols”.

• Ip,l-operators arise in several applications:

(i) Parametrices for RPT: Q ∈ I
1
2
−m,− 1

2 (∆, CΣ) [Melrose-Uhlmann]

(ii) Parametrices for restricted X-ray transforms [G.- Uhlmann];

(iii) Linearized inverse probs for seismic, radar imaging [Nolan, Felea];

(iv) Composing FIOs outside the clean intersection calculus
[G.-Uhlmann, Felea].
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Paired Lagrangian operators

• Ex. x = (x′, x′′), C0 = ∆T ∗Rn , C1 = N∗{x′ − y′ = 0}

• Def. 1. K(x, y) =
∫
ei((x

′−y′)·ξ′+(x′′−y′′)·ξ′′)a(x, ξ)dξ′dξ′′,

|∂αx ∂
β
ξ′∂

γ
ξ′′a| ≤ cαβγ(1 + |ξ′|+ |ξ′′|)m−|β|(1 + |ξ′′|)m′−|γ|

• Def. 2. Iterated regularity: u ∈ Ip,l(C0, C1) if P1P2...PNK ∈ Hs0
loc

where Pj ∈ Ψ1
cl with σ(Pj) vanishing on C0 ∪ C1
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Beyond the standard FIO calculus

• Recall: Melrose-Taylor Radon transform (T5 from Lec. I),
RMT : D′(∂Ω× R)→ D′(Sn−1 × R), given by

RMT (f)(ω, t) = RMT (f)(ω, t) :=

∫ ∫
{y·ω=t−s}⊂∂Ω×R

f(y, s)

• RMT ∈ I−(n−1)/2(C), with C not a canonical graph. Both πL, πR
have degeneracies of Whitney fold type. Such C called folding
canonical relations. T ∈ I(C) lose 1/6 deriv on L2.

• M-T already observed that the composition Ct ◦ C is not a smooth
canonical relation, but ⊂ ∆T ∗(∂Ω×R) ∪ C1, where C1 intersects ∆
cleanly in codim 1.

• Thm. (Nolan-Felea). If C is a folding canonical relation and
F ∈ Im(C;X,Y ) then F ∗F ∈ I2m,0(∆T ∗Y , C1).
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Basic references: Classic articles

• L. Hörmander, Fourier integral operators, I. Acta Math. 127 (1971),
79–183.

• J.J. Duistermaat and L. Hörmander, Fourier integral operators, II.
Acta Math. 128 (1972), 183–269.

• JJ. Duistermaat and V. Guillemin, The spectrum of positive elliptic
operators and periodic bicharacteristics., Invent. Math. 29 (1975),
39–79.

• Older papers of historical interest for introducing important ideas:
V. Maslov, Y. Egorov, ...
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