MSRI LECTURE ON GENERAL RELATIVITY

LECTURER: PETER HINTZ

ABSTRACT. Rough notes for the lecture on general relativity at the MSRI introductory workshop in Fall 2019.

- <u>Einstein Vacuum Equations</u>: (EVE) $\operatorname{Ein}(g) + \Lambda g = 0$ where $\Lambda \in \mathbb{R}$, g a Lorentzian metric on M and $\operatorname{Ein}(g) = \operatorname{Ric}(g) \frac{1}{2}\operatorname{scal}_g g$.
 - Upon taking traces, EVE is equivalent to $\operatorname{Ric}(g) \Lambda g = 0$
- Examples $\Lambda = 0$:
 - (1) Minkowski space: $M = \mathbb{R}_t \times \mathbb{R}_x^3$, $g_0 = -dt^2 + dx^2$

- The local model of any Lorentzian spacetime

- (2) <u>Schwarzschild black hole</u>: m > 0 (mass of the black hole), $M = \mathbb{R}_t \times (2m, \infty)_r \times \mathbb{S}^2_{\omega}$ and $g_m = -(1 \frac{2m}{r})dt^2 + (1 \frac{2m}{r})^{-1}dr^2 + r^2g_{\mathbb{S}^2}$
 - Unique vacuum spherically symmetric family

- The apparent singularity in the second term of the metric is only a coordinate singularity and can be removed by a change of coordinates

- * Light cones begin to tilt toward the black hole (r = 0) as they approach r = 2m
- * Light or massive observer must reach r = 0 in finite time once their distance from r = 0 is less than or equal to 2m
- <u>Trapping</u> occurs at r = 3m (photosphere); in phase space T^*M , we have normally hyperbolic trapping
- (3) <u>Kerr black hole</u>: $m > 0, 0 \le a < m, g_{m,a} = ...$
 - In T^*M , there is normally hyperbolic trapping (Wunsch-Zworski, Dyatlov)

• Examples $\Lambda > 0$:

- (1) De-Sitter space: $g = \frac{-d\tau^2 + dy^2}{\tau^2}$ for $\Lambda = 3$
- (2) <u>Schwarzschild de-Sitter</u>:
 - The metric is $g_m = -(1 \frac{2m}{r} \frac{\Lambda r^2}{3})dt^2 + (1 \frac{2m}{r} \frac{\Lambda r^2}{3})^{-1}dr^2 + r^2 g_{\mathbb{S}^2}$ - Event horizon at $r \approx 2m$ and cosmological horizon and $r \approx \sqrt{\frac{3}{\Lambda}}$
- (3) Kerr de-Sitter
- The Initial Value Problem:
 - $-\operatorname{Ric}(g)_{ij} = g^{kl}\partial_k\partial_l g_{ij} + g\partial^2 g + \text{l.o.t.}$

- One sees that the first term is $\Box_q g_{ij}$.

Theorem 1. (Choquet-Bruhat) $\Lambda \in \mathbb{R}$. Given (Σ^3, γ) and Riemannian manifold, K a symmetric two-tensor on Σ satisfying the constraint equations, there exists (M^4, g) such that g satisfies the EVE and $\iota : \Sigma \hookrightarrow M$ such that $\gamma = \iota^* g$ and $K = II_{\mu(\Sigma)}^{g}$ which is unique up to a diffeomorphism.

- Proof sketch:

- * Take $\Lambda = 0$.
- * Guess $M = (\epsilon, \epsilon)_t \times \Sigma$
- * Solve $\operatorname{Ric}(g) = 0$ along with W(g) = (1-form in g and $\partial g) = 0$
- * Typically $W(g) = \operatorname{tr}_g(\nabla^g \nabla^{g_0}) \sim \Box_{g,g_0} \mathbb{1}$
- * So, W(g) = 0 means $1: (M, g) \to (M, g_0)$ is a wave map
- * Consider the reduced Einstein vacuum equations (REVE):

$$\operatorname{Ric}(g) - \delta_a^* W(g) = 0$$

where δ_q^* is the symmetric gradient

- * The second term kills off the non-wave term in the EVE
- * REVE is a quasilinear wave equation
- * Given $(\gamma, K) \in (S^2(T^*\Sigma))^2$, cook up $(g^0, g^1) \in (S^2(T^*M))^2$ such that $\gamma = \iota^* g$ and $K = II_{\iota(\Sigma)}^g$ and $W(g^0 + tg^1) = 0$ at t = 0
- * Solve REVE using the constraint equations and $\mathcal{L}_{\partial_t} W(g) = 0$ at t=0
- * Use second Bianchi identity to deduce that $\operatorname{Ric}(q) = 0$

- Minkowski space:
 - * $\Sigma = \mathbb{R}^3_r$
 - $\begin{aligned} * & |\gamma_{ij} (g_m)_{ij}| \le \epsilon r^{-1-\alpha}, \ r \ge 1, \ |m| < \epsilon \\ * & |k_{ij}| \le \epsilon \langle r \rangle^{-2-\alpha} \end{aligned}$

 - * Analogous assumptions for derivatives

Theorem 2. (Christodoulou-Klainerman, Friedrich, Lindblad-Rodnianski, *H-Vasy*) There exists a geodesically complete g with Ric(g) = 0 on \mathbb{R}^4 with

$$|g_{ij} - (g_0)_{ij}| \le (1 + |t| + r)^{-1}$$

Theorem 3. (*H-Vasy*) If (γ, K) are polyhomogeneous (phg) on $\overline{\mathbb{R}^3}$ then g is phg on the compactification of \mathbb{R}^4 .

- Kerr stability: (open)

- * Decay rate in Minkowski is polynomial
- * Taturu's work implies decay is t^{-3}
- $-\Lambda > 0$ gives better decay

Theorem 4. (H-Vasy) (KdS stability) (γ, K) close to data of g_{m_i,a_i}^{KdS} and $|a_i| \ll m_i$. There there exists g on Ω such that $Ric(g) - \Lambda g = 0$ and (m_f, a_f) such that $g = g_{m_f,a_f}^{KdS} + \tilde{g}$ where \tilde{g} decays and g_{m_f,a_f}^{KdS} is constant.

- * Analysis in ${}^{b}T^{*}M$ and is as nonlinear waves lecture
- * Sketch of proof:
 - \cdot Solve REVE

$$\begin{cases} P(g) = (\operatorname{Ric} - \Lambda)(g) - \delta_g^* W(g) = 0\\ i.c.(g^0, g^1) \end{cases}$$
(1)

which is a quasilinear wave equation

- \cdot Use iteration scheme
- · Show for $g^{(k)} = g_{dS} + \tau^{\alpha} H_b^s$ that $(D_g P)^{-1} \sim (\Box_g + \text{l.o.t.})^{-1}$: $\tau^{\alpha} H_b^{s-1} \rightarrow \tau^{\alpha} H_b^s$
- \cdot Run the iteration scheme
- · Obtain decaying solution
- \cdot Suffices to compute the resonances of $D_{g_{dS}}P$
- Bad resonances are artifacts of gauge invariance
- · Change gauge in consistent way to work around bad resonance