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Inverse Boundary Problems

Can one determine the internal properties of a medium

by making measurements outside the medium (non-

invasive)?

X-ray tomography (CAT-scans)

Problem: Can we recover the density from attenuation

of X-rays?
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Radon (1917) n = 2

f(x) = Unknown function

Idetector = e−
∫
L fIsource

Rf(s, θ) = g(s, θ) =
∫
〈x,θ〉=s

f(x)dH =
∫
L
f

f(x) =
1

4π2
p.v.

∫
S1
dθ
∫ d

dsg(s, θ)ds

〈x, θ〉 − s
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LINEAR (No Scattering)

X-ray tomography (CT)

PET MRI
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NONLINEAR (Scattering)

Ultrasound

Electrical

Impedance

Tomography

(EIT)
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Hybrid Methods

Superposition of 2 images each obtained with a single wave

One single wave in sensitive only to a given contrast

Ultrasound to bulk compressibility

Photoacoustic

Imaging
Optical wave to dielectric permittivity

Thermoacoustic

Imaging

LF Electromagnetic wave to electrical

impedance, conductivity.
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Photoacoustic Tomography

Photoacoustic Effect: The sound of light

Picture from Economist

(The sound of light)

Graham Bell: When

rapid pulses of light are

incident on a sample of

matter they can be ab-

sorbed and the resulting

energy will then be radi-

ated as heat. This heat

causes detectable sound

waves due to pressure

variation in the surround-

ing medium.
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Thermoacoustic Tomography

Wikipedia
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(Loading Melanoma3DMovie.avi)

Lihong Wang (Washington U.)
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Melanoma3DMovie.avi
Media File (video/avi)



Mathematical Model

First Step : in PAT and TAT is to reconstruct H(x)

from u(x, t)|∂Ω×(0,T ), where u solves

(∂2
t − c2(x)∆)u = 0 on Rn × R+

u|t=0 = βH(x)

∂tu|t=0 = 0

Second Step : in PAT and TAT is to reconstruct the

optical or electrical properties from H(x) (internal mea-

surements).
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PROGRESSING WAVES

Let q ∈ C∞0 (Rn), supp q ⊂ {x ∈ Rn : |x| < R}

Let ω ∈ Sn−1 = {x ∈ Rn : |x| = 1}.

CP

 ((∂2
t −∆) + q)u = 0 on Rnx × Rt

u = δ(t− x · ω), t < −R

〈δ(t− x · ω), ϕ〉 =
∫
x·ω=t

ϕ(x) dH, ϕ ∈ C∞0 (Rn)
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PROGRESSING WAVES

δ(t− x · ω) solves

�δ(t− x · ω) = 0

where � = ∂2
t −∆ is the D’Alembertian.

(� + q)δ(t− x · ω) = qδ(t− x · ω)

Next try

u1(t, x, ω) = δ(t− x · ω) + a1(x, ω)H(t− x · ω)

H(t− x · ω) =

{
1 t > x · ω
0 t < x · ω

�H(t− x · ω) = 0
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PROGRESSING WAVES

(� + q)u1 = (q(x) + 2∇a1 · ω)δ(t− x · ω)

+ (q(x)a1 −∆a1)H(t− x · ω)

To eliminate main singularity, we choose

∇a1 · ω = −
q(x)

2

a1(x, ω) = −
1

2

∫ x·ω
−∞

q(x+ (s− x · ω)ω)ds
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PROGRESSING WAVES

If x · ω > R,

a1(x, ω) = X-ray transform of − q/2

If(x, ω) =
∫
f(x+ sω)ds, f ∈ C∞0 (Rn)

Next try

u2 = δ(t− x · ω) + a1(x, ω)H(t− x · ω) + a2(x, ω)(t− x · ω)+

where sk+ =

{
sk s > 0

0 s < 0
and a2 ∈ C∞(Rn × Sn−1)

∇a2 · ω = −
1

2
(q(x)a1 −∆a1)
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PROGRESSING WAVES

(� + q)u2 = (q(x) + δa2)(t− x · ω)+

The solution u of CP is

u = δ(t− x · ω) +
N∑
j=0

aj+1(x, ω)(t− x · ω)j+

+ CN−2(Rnx × Rt)
Using Borel type lemma (see [MU])

(∗) u =δ(t− x · ω) +
∞∑
j=0

aj+1(x, ω)(t− x · ω)j+

+ smooth error, aj ∈ C∞(Rnx × Sn−1
ω )

(∗) is a conormal distribution to hypersurface {t = x · ω}.
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PROGRESSIVE WAVE EXPANSION

CP : u =δ(t− x · ω) + a1(x, ω)H(t− x · ω)

+
∞∑
j=1

aj+1(x, ω)(t− x · ω)j+ + smooth

Another representation:

u(t, x, ω) =
∫
ei(t−x·ω)·ρχ(ρ)

(
1 +

∞∑
j=1

cj
aj(x, ω)

ρj

)
dρ

+ smooth
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PROGRESSIVE WAVE EXPANSION

χ(ρ) =

{
0, |ρ| ≤ 1/2

1, |ρ| ≥ 1
, χ ∈ C∞(R)

cj some constants

Amplitude : χ(ρ)

Ñ
1 +

a1(x, ω)

ρ
+
∞∑
j=1

aj+1(x, ω)

ρj+1

é
From the principal symbol of u(t, x, ω)− δ(t− x · ω) for

any t > R, we can determine
∫
q(x + sω)ds = Iq(x, ω),

which is the X-ray transform of q, and therefore q.
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X-RAY TRANSFORM

ω

t = −R

t = R

supp q
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X-RAY TRANSFORM

If(x, ω) =
∫
f(x+ sω) ds

=
∫
f(x− (x · ω)ω + rω) dr

(x− (x · ω)ω) · ω = 0, x− (x · ω)ω ∈ ω⊥ = {x ∈ Rn : x · ω = 0}

If(x, ω) =
∫
f(x+ rω) dr x ∈ ω⊥

ω

ω⊥
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X-RAY TRANSFORM

Formal Transpose

I∗g(x) =
∫
Sn−1

g(x− (x · ω)ω, ω) dω

g ∈ C∞(T ), T = {(x, ω) : x ∈ ω⊥}

Exercise:

I∗If(x) = cn

∫
f(y)

|x− y|n−1
dy f ∈ C∞0 (Rn)

This extends to f ∈ E ′(Rn).
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X-RAY TRANSFORM

I∗I = (−∆)−1/2, a pseudodifferential operator of order

−1.

Inversion formula:

(−∆)1/2I∗If = f f ∈ E ′(Rn)

Non-local inversion formula
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X-RAY TRANSFORM

(−∆)1/2(−∆)1/2I∗If = (−∆)1/2f

(−∆)I∗If = (−∆)1/2f

WF (−∆)1/2f = WF f

We can recover singularities of f with a local inversion

formula (local tomography [FRS])
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X-RAY TRANSFORM

Example

f =
2∑
i=1

ai(x)χΩi

Ω1

Ω2

Ωi smooth domains, ai ∈ C∞(Rn).
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ACOUSTIC WAVE EQUATION

c(x) ∈ C∞(Rn), c(x) > 0, c(x) = 1, |x| > R

CP

 (∂2
t − c2(x)∆)u = 0 on Rnx × Rt

u = δ(t− x · ω), t < −R

u(t, x, ω) =A0(x, ω)δ(t− ϕ(x, ω)) +A1(x, ω)H(t− ϕ(x, ω))

+
∞∑
j=0

Aj+1(x, ω)(t− ϕ(x, ω))j+ + smooth
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EIKONAL EQUATION

Highest order singularity,

(1− c2(x)|∇xϕ|2)δ′′(t− ϕ(x, ω))

Eikonal equation (Non-linear, first order) :

{
|∇xϕ|2 = 1

c2(x)
ϕ(x, ω) = x · ω, x · ω < −R
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TRANSPORT EQUATION

Eliminate singularity δ′(t− ϕ(x, ω))

TE

®
2c(x)∇xϕ · ∇A0 − c2(x)∆ϕA0 = 0

A0 = 1, x · ω < −R

First order linear PDE
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EIKONAL EQUATION

{
|∇xϕ|2 = 1

c2(x)
ϕ(x, ω) = x · ω, x < −R

Hamilton - Jacobi theory

Hamiltonian H(x, ξ) =
1

2
(c2(x)|ξ|2 − 1)

Want ξ = ∇xϕ(x, ω) for some ϕ.
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HAMILTON-JACOBI THEORY

Hamiltonian is given by

Hc(x, ξ) =
1

2

(
c2(x)|ξ|2 − 1

)

Xc(s,X0) =
Ä
xc(s,X0), ξc(s,X0)

ä
be bicharacteristics ,

sol. of
dx

ds
=
∂Hc

∂ξ
,

dξ

ds
= −

∂Hc

∂x

x(0) = x0, ξ(0) = ξ0, X0 = (x0, ξ0), where ξ0 ∈ Sn−1
c (x0)

Sn−1
c (x) =

{
ξ ∈ Rn; Hc(x, ξ) = 0

}
.

Geodesics Projections in x: x(s) .
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GEODESICS (RAYS)

Geodesics minimize length (time) locally, ds
c .

Geodesics in a medium with a slow region in the center
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EIKONAL EQUATION

x · ω = −R

Flow-out from (x0, ω0) such that x0 ·ω0 = −R by bichar-

acteristics

Exercise ([MU]) : Flowout (x(s), ξ(s)) is a Lagrangian

submanifold of Rnx×Rnξ . Locally, it is given by (x,∇xϕ),

ϕ(x, ω) = x · ω, |x| > R.
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LAGRANGIAN MANIFOLDS

Lagrangian Λ is an n-dimensional submanifold such that
the symplectic form ω =

∑
dξi ∧ dxi vanishes on Λ.

ω(t, t̃) = 0, t, t̃ ∈ TxΛ

Hc(x, ξ) =
1

2
(c2(x)|ξ|2 − 1)

Bicharacteristics stay in Hc = 0.

Therefore, Λ ⊂ {Hc = 0}.

Λc = {(x, dxϕ)} locally some ϕ

Then c2(x)|∇xϕ|2 − 1 = 0.
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EIKONAL EQUATION

The EE has only local solutions

ck(r) = exp(k exp(− r2

2σ2)), 0 ≤ σ ≤ 1, σ fixed

Francois Monard: SIAM J. Imaging Sciences (2014)
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GEODESIC DISTANCE

ω

x · ω = −R

x · ω = R

∇xϕ is perpendicular to the distorted plane wave {x :
ϕ(x, ω) = t}

Therefore, ϕ(x, ω) measures the geodesic distance be-
tween {x : x ·ω = −R} and {x : ϕ(x, ω) = t} (assume EE
can be solved globally)
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BOUNDARY RIGIDITY

IP: Suppose we know

ϕ(x, ω), |x| = R

Can we recover c(x)?

33



BOUNDARY RIGIDITY
Let M be a bounded domain in Rn with smooth

boundary, c ∈ C∞(M), c > 0

x, y ∈ ∂M

Boundary distance function

dc(x, y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) =
∫ 1

0

1

c

∣∣∣∣dσdt
∣∣∣∣ dt

Inverse problem (Boundary Rigidity)

Determine c knowing dc(x, y) x, y ∈ ∂M
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BOUNDARY RIGIDITY

dc ⇒ c ?

dc(x0, ∂M) > supx,y∈∂M dc(x, y)

Need an a-priori condition to recover c from dc.
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DEF (M, c) is simple if given two points x, y ∈ ∂M , ∃!
minimizing geodesic joining x and y and ∂M is strictly

convex

strictly convex

THEOREM (Mukhometov [M]) One can determine c

uniquely and stably from dc if (M, c) is simple.
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LAGRANGIAN DISTRIBUTIONS

CP : u =A0(x, ω)δ(t− ϕ(x, ω)) +A1(x, ω)H(t− ϕ(x, ω))

+ smoother

u is a Lagrangian distribution

Another representation (locally) :

u(t, x, ω) =
∫
ei(t−ϕ(x,ω))ρa(t, x, ω, ρ)dρ

where a ∈ S0(Rt × Rnx × Sn−1
ω × Rρ)
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INVERSE PROBLEM FOR ACOUSTIC EQUATION

Theorem. If we know u(t, x, ω), any t > R, then we can

determine c(x) if (B(0, R), c) is simple.

Sketch of Proof: We can determine ϕ(x, ω), |x| > R

and therefore dc and then c(x) using Mukhometov’s

theorem.
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TRANSPORT EQUATION

(∂2
t − c2(x)∆)u = 0

u = δ(t− x · ω), t < −R

u = A0(x, ω)δ(t− ϕ(x, ω)) +A1(x, ω)H(t− ϕ(x, ω)) + smoother®
∇xϕ · ∇xA0 + 1

2c
2(x)∆A0 = 0

A0 = 1, x · ω < −R

Integrating along geodesics,

dx

ds
= ∇xϕ(x(s), ω)

ϕ(x(s), ω) = e−
1
2

∫ s
−∞ c2(x(r))dr

∫ s
0
A0(x(r))dr

This leads to the geodesic X-ray transform.
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GEODESIC X-RAY TRANSFORM

Let c ∈ C∞(M), c > 0. Linearizing c 7→ dc leads to the

ray transform

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt

where x ∈ ∂M and ξ ∈ SxM = {ξ ∈ TxM : |ξ| = 1}.

Here γ(t, x, ξ) is the geodesic starting from point x in

direction ξ, and τ(x, ξ) is the time when γ exits M . We

assume that (M, c) is nontrapping, i.e. τ is always finite.
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GEODESIC X-RAY TRANSFORM

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt

Theorem ([M]). If (M, c) simple, then Ic is injective.

Icf = 0, f ∈ C∞(M) =⇒ f = 0

Moreover, stability estimates are valid.

The geodesic X-ray transform is the linearization of

c 7→ dc.
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GEODESIC X-RAY TRANSFORM

Let X ⊂ Rn be a bounded domain with smooth bound-

ary, c ∈ C∞(X), c(x) > 0.

Icf(x, ξ) =
∫
f(γ(x, s, ξ))dξ x ∈ X, ξ ∈ S∗xX

γ(x, s, ξ) is the geodesic through (x, ξ)

S∗xX = {ξ ∈ T ∗xX : c(x)|ξ| = 1}

Theorem ([G1],[SU1]).

Assume

®
T ∗xX → X

v 7→ γ(x, v)
is a diffeomorphism.

Then I∗c Ic is an elliptic pesudodifferential operator of

order −1 with principal symbol c(x)|ξ|−1.
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NORMAL OPERATOR

Sketch of Proof: X ⊂ Rn, X open

I∗c Icf(x) =
∫
S∗xX

∫ ∞
0

f(expx tv) dt dλ f ∈ C∞0 (X)

dλ is the standard measure on S∗xX
γ(x, tv) = expx(tv)
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NORMAL OPERATOR

Transformation expx(tv) = y

I∗c Icf(x) =
∫
f(y)J(x, y)

dc(x, y)n−1
dy

J(x, y) is the Jacobian of the transformation

J(x, y) =

∣∣∣∣∣det
∂2f

∂x∂y

∣∣∣∣∣ , f(x, y) =
1

2
dc(x, y)2

Exercise [SU1]: d2
c (x, y) = G(x, y)|x − y|2, G smooth,

G(x, x) = 1
c2(x)

.
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SCATTERING RELATION

dc only measures first arrival times of waves.

We need to look at behavior of all geodesics

‖ξ‖c = ‖η‖c = 1

αc(x, ξ) = (y, η), αc is SCATTERING RELATION ([G2],[U])

If we know direction and point of entrance of geodesic

then we know its direction and point of exit.
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Travel Time Tomography

Define the scattering relation αc.

αc : (x, ξ)→ (y, η).

αc, dc follows all geodesics.

Inverse Problem: Do αc, dc determine c?
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NON-SIMPLE SPEEDS

IP: Do αg, dc determine c?

Remark: If (M, c) is simple, αc is equivalent to dc.

For non-simple metrics (caustics and/or non-convex

boundary), this is the right problem to study.

For some of the results, see the survey [SUVZ].
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PARTIAL DATA

Travel time with partial data: Does dc, known on

∂M × ∂M near some p, determine c near p uniquely?

48



PARTIAL DATA

Theorem ([SUV]). Let dimM ≥ 3. If ∂M is strictly

convex near p for c and c̃, and dc = dc̃ near (p, p), then

c = c̃ near p.

Also stability and reconstruction.
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FOLIATION CONDITION

We could use a layer stripping argument to get deeper
and deeper in M and prove that one can determine c in
the whole M .

Foliation condition: M is foliated by strictly con-
vex hypersurfaces if, up to a nowhere dense set, M =
∪t∈[0,T )Σt, where Σt is a smooth family of strictly con-
vex hypersurfaces and Σ0 = ∂M .

A more general condition: several families, starting
from outside M .
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GLOBAL RESULT

Theorem ([SUV]). Let dimM ≥ 3, let c and c̃ be two

smooth sound speeds on M , let ∂M be strictly convex

with respect to both c and c̃. Assume that M can be

foliated by strictly convex hypersurfaces for c. Then if

αc = αc̃, dc = dc̃ we have c = c̃ in M .

Also stability and reconstruction.

Examples: The foliation condition is satisfied for strictly

convex domains of non-negative sectional curvature,

simply connected domains with non-positive sectional

curvature and simply connected domains with no focal

points. Also if sound speed increases with depth.
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IDEAS OF THE ROOF

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy

(2016) on the linearized problem with partial data.

Second, we convert the non-linear boundary rigidity

problem to a “pseudo-linear” one. Straightforward lin-

earization, which works for the problem with full data,

fails here.
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GEODESIC X-RAY TRANSFORM

WITH PARTIAL DATA

U-Vasy result: Consider the inversion of the geodesic

ray transform

If(γ) =
∫
f(γ(s)) ds

known for geodesics intersecting some neighborhood

of p ∈ ∂M (where ∂M is strictly convex) “almost tan-

gentially”. It is proven that those integrals determine

f near p uniquely. It is a Helgason support type of

theorem for non-analytic curves! This was extended

recently by H. Zhou for arbitrary curves (∂M must be

strictly convex w.r.t. them) and non-vanishing weights.
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U-VASY

The main idea in U-Vasy is the following:

Introduce an artificial, still strictly convex boundary

near p which cuts a small subdomain near p. Then

use Melrose’s scattering calculus to show that the I,

composed with a suitable ‘‘back-projection” is elliptic

in that calculus. Since the subdomain is small, it would

be invertible as well.
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U-VASY

Consider

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

where χ is a smooth cutoff sketched below (angle ∼ x),

and x is the distance to the artificial boundary.
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INVERSION OF LOCAL GEODESIC TRANSFORM

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

Main result: P is an elliptic pseudodifferential operator
in Melrose’s scattering calculus.

There exists A such that AP = Identity +R

This is Fredholm and R has a small norm in a neighbor-
hood of p. Therefore invertible near p using Neumann
series.

(Identity +R)−1APf = f

.
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SOME NUMERICAL RESULTS FOR
INVERSE GEODESIC X-RAY TRANSFORM

f1 = 0.01 + sin
(
2π(x+ y + z)/10

)
[ACU]
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SOME NUMERICAL RESULTS FOR

INVERSE GEODESIC X-RAY TRANSFORM

f2 = 0.01 + sin
(
2π(x+ y)/10

)
+ cos

(
2πz/20

)
[ACU]
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SOME NUMERICAL RESULTS FOR

INVERSE GEODESIC X-RAY TRANSFORM

f3 = x+ y2 + z2/2

[ACU]
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SOME NUMERICAL RESULTS FOR
INVERSE GEODESIC X-RAY TRANSFORM

f4 = 1 + 6x+ 4y + 9z + sin
(
2π(x+ z)

)
+ cos

(
2πy

)
[ACU]
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SOME NUMERICAL RESULTS FOR
INVERSE GEODESIC X-RAY TRANSFORM

f5 = x+ ey+z/2

[ACU]
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• Relative errors for using up to 4 terms in the Neu-
mann series

relative error f1 f2 f3 f4 f5

n=0 37.1% 37.08% 37.13% 37.27% 37.25%
n=1 15.74 % 15.63% 15.81% 16.2% 16.32 %
n=2 8.92% 8.65% 9.09% 9.98% 10.28%
n=3 6.99% 6.55% 7.26% 8.61% 9.02%



SECOND STEP: REDUCTION TO

PSEUDOLINEAR PROBLEM

Identity ([SU2])

X 0

Xg1
(t)

Xg2
(t)

Xg1
(s)

Vg1 V g2
g

gi =
1

c2
i

dx2,

T = dc1,

F (s) = Xc2

(
T − s,Xc1(s,X

0)
)
,

F (0) = Xc2(T,X
0), F (T ) = Xc1(T,X

0),∫ T

0
F ′(s)ds = Xc1(T,X

0)−Xc2(T,X
0)

∫ T
0

∂Xc2
∂X0

Ä
T − s,Xc1(s,X0)

ä
(Vc1 − Vc2)

∣∣∣
Xc1(s,X0)

dS

= Xc1(T,X0)−Xc2(T,X0)
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IDENTITY([SU2])

∫ T
0

∂Xc2
∂X0

Ä
T − s,Xc1(s,X0)

ä
(Vc1 − Vc2)

∣∣∣
Xc1(s,X0)

dS

= Xc1(T,X0)−Xc2(T,X0)

Vcj :=

Ç
∂Hcj

∂ξ
,−
∂Hcj

∂x

å
the Hamiltonian vector field.

(gk) =
1

c2k

Ä
δij
ä
, k = 1,2

Vgk =
(
c2kξ, −

1

2
∇(c2k)|ξ|2

)
Linear in c2k!
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RECONSTRUCTION

∫ T
0

∂Xc1
∂X0

Ä
T − s,Xc2(s,X0)

ä
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xc2(s,X0)

dS

= Xc1(T,X0)︸ ︷︷ ︸
data

−Xc2(T,X0)

Inversion of weighted geodesic ray transform and use sim-

ilar methods to U-Vasy.
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• We test the method using a spherical section of the
Marmousi model

• Results
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SCATTERING CALCULUS

The scattering calculus ([M1],[M2]) is a version of the

classical one on Rnx with a compactification of Rnx ×
Rnξ . Consider pseudodifferential operators with symbols

a(z, ζ) satisfying symbol-like estimates both w.r.t. z

and ζ (Hörmander, Parenti, Shubin)

|∂αz ∂
β
ζ a(z, ζ)| ≤ Cα,β〈z〉l−|α|〈ζ〉m−|β|

This defines the class Sl.m(Rn×Rn). Lower order means

both lower order of differentiaion and a slower growth

at infinity.

Now compactify both Rnx and Rnξ to get the scattering

calculus.
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SCATTERING CALCULUS

In polar coordinates rω, r > 0, ω ∈ Sn−1, perform the

change of variables x = 1/r for r � 1. Then a neigh-

borhood of ∞ becomes a neighborhood of 0, i.e., 0 <

x < C; and x = 0 is the “infinite boundary”.
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If one parametrizes Sn−1 locally by y ∈ Rn−1, then we

have the coordinates

(x, y) ∈ R+ × Rn−1
+ : Rn+

wth x = 0 defining Sn−1, flattened. The standard basic

vector fields ∂/∂r, ∂/∂(ryj) take the form

x2 ∂

∂x
, x

∂

∂yj
,

and they are complete, tangent to x = 0 and unit.

Those are the fields we use in the quantization and in

the Sobolev spaces, as well.

We do that both for z and for its dual ζ. Then the class

Ψl,m(Rn) becomes the class Ψl,m(Rn+) with symbols in
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Sl.m(Rn+ × Rn+). . This can be done on manifolds with

boundary, as well.

There is a Fredholm theory of compact operators on

such spaces.

Why the scattering calculus? When we approach the

artificial boundary, the“angle of view” becomes smaller

and the ellipticity degenerates. The classical calculus

would not give us an elliptic operator.
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