MSRI LECTURES ON NONLINEAR WAVES

LECTURER: PETER HINTZ

ABSTRACT. Rough notes for lectures on nonlinear waves at the MSRI introductory workshop in Fall 2019.

• Local Theory for Linear Waves:

- Lorentzian metric
$$g = -dt^2 + dx^2$$
 on $\mathbb{R}^t \times \mathbb{R}^{n-1}_r$

- Given $v \in T_p(\mathbb{R}^t \times \mathbb{R}^{n-1}_x)$
 - * We say v is timelike if g(v, v) < 0.
 - * We say v is null/lightlike if g(v, v) = 0.
 - * We say v is spacelike if g(v, v) > 0.

$$-\frac{\partial}{\partial t}$$
 is timelike, $\frac{\partial}{\partial t} + \frac{\partial}{\partial x_1}$ is null

- Naturally associated to g is the wave operator (Laplace-Beltrami operator)

$$\Box_g = -\partial_t^2 + \Delta_x.$$

- Consider the forcing problem

$$\begin{cases} \Box_g u = f\\ u|_{t<0} = 0. \end{cases}$$
(1)

where $\operatorname{supp}(f)$ is bounded in \mathbb{R}^{n-1}_x .

* There exists a unique solution u(t, x)

- Properties of solution:
 - * Finite speed of propagation: a bound on the support of u
 - supp u_t contained in the causal future of supp(f)
 - This allows us to localize
 - * Regularity: obtain a basic estimate

• $\|\chi u\|_{H^s} \lesssim \|f\|_{H^{s-1}}$ where χ is smooth with compact support in $\mathbb{R}^t \times \mathbb{R}^{n-1}_x$.

- The solution gains one derivative
- * Sketch of regularity proof:
 - Suppose $f \in C^{\infty}$.
 - We already know $u \in C^{\infty}$ for t < 0.
 - Idea: propagate the regularity.

$$\cdot \ G(t, x, \sigma, \xi) = \sigma_p(\Box_g) = -\sigma^2 + |\xi|^2.$$

LECTURER: PETER HINTZ

- · Outside of $\Sigma_{\Box} = \{(t, x, \sigma, \xi) : |\sigma| = |\xi|\}$ we have elliptic estimates.
- · Outside of Σ_{\Box} , we need to propagate estimates.
- · The Hamiltonian vector field: $H_G = -2\sigma \partial_t + 2\xi \partial_x$
- The integral curves of H_G in Σ_{\Box} are null geodesics for g
- · So, by propagation of singularities we have

$$\|\chi u\|_{H^s} \lesssim \|B_1 u\|_{H^s} + \|B_2 \Box_g u\|_{H^{s-1}} +$$
error

where χ is supported in t > 0 and B_1 supported in t < 0 and intersects the backwards light cone of the support of χ • Thus we have the estimate we desired

, 0

Global Theory for Linear Waves:

- Consider De Sitter space:
$$g_0 = \frac{-d\tau^2 + dy^2}{\tau^2}$$
 on $M = [0, \infty)_\tau \times \mathbb{R}_y^{n-1}$

* 0

- * Think of $\tau = e^{-t_*}$ where t_* is the usual time function.
- * Look at light cone of (0,0), $\tau = |y|$, and consider the forcing problem again with $\operatorname{supp}(f)$ contained in that light cone
- * The metric is singular at (0,0), so blow up the manifold by introducing the coordinate $x = \frac{y}{x}$.
- * Let Ω be a domain containing a portion of the light cone in the blown up manifold and consider the forcing problem in Ω .
- After blowup, the metric becomes

$$g_0 = -(1-x^2)rac{d au^2}{ au^2} + 2xdxrac{d au}{ au} + dx^2 \; .$$

which is a b-metric

- $\begin{aligned} &- \Box_{g_0} \in \operatorname{Diff}_b^2(\Omega), \, \Omega = [0,1)_\tau \times X, \, X = \{ |x| < 2 \} \\ &- \Box_{g_0} = -(\tau \partial_\tau)^2 + 2\tau \partial_\tau x \partial_x + (1-x^2) \partial_x^2 + \mathrm{l.o.t.} \end{aligned}$
- Observe that \square_{g_0} is dilation invariant in τ (corresponds to translation invariance in t_*
- Led to taking Fourier transform in τ , i.e., $\tau \partial_{\tau}$ becomes σ

$$-\Box_{g_0} \to \widehat{\Box_{g_0}}(\sigma) \in \operatorname{Diff}^2(X)$$

$$u(\tau, x) = \frac{1}{2\pi} \int \tau^{i\sigma} \widehat{\Box_{g_0}}(\sigma)^{-1} \widehat{f}(\sigma) d\sigma$$

- Need to understand if $\widehat{\square_{q_0}}(\sigma)^{-1}$ is analytic/meromorphic and where poles are if they exist
- <u>Poles</u>: resonances of $\widehat{\Box}_{q_0}(\sigma)^{-1}$
 - Poles along the imaginary axis with imaginary part less than or equal to zero

- $-u(\tau, x) = u_0 + \tilde{u}(\tau, x)$ where $u_0 \in \mathbb{R}$ and $|\tilde{u}| \leq C\tau$ which means you can differentiate with respect to $\tau \partial_{\tau}$ as much as we want
- Really, $u \in \mathscr{A}_{phg}^{\mathcal{E}}(\Omega)$ where $\mathcal{E} = \{\text{imaginary resonances}\}$
- Qualitatively: $|u_0| + \|\tilde{u}\|_{\tau H_b^s} \lesssim \|f\|_{\tau H_b^{s-1}}$
- <u>Nonlinear Theorem</u>: (H-Vasy) Consider

$$\begin{cases} \Box_{g(x,u)} u = f \\ u|_{\tau > 1} = 0 \end{cases}$$

$$\tag{2}$$

where $g^{ij}(x,u) = g_0^{ij}(x) + c^{ij} |\nabla u|_{g_0}^2$. For small f in τH_b^{s-1} , the forcing problem has a global solution in Ω and $u \in \mathbb{R} \oplus \tau H_b^s$

- Idea of proof:

- * Iteration scheme
- * $\Box_{g_0} u^{(0)} = f$ can be solved as before
- * Iterate: $\Box_{q(x,u^{(k)})}u^{(k+1)} = f$
- * Solution: $u = \lim_{k \to \infty} u^{(k)}$
- * How does this work?
- * If $u^{(k)} \in \mathbb{R} \oplus \tau H_b^s$, then $\Box_{g(x,u^{(k)})} = \Box_{g_0} + O(\tau)$
- * Need to show that for such $u^{(k)}$, $(\Box_{q(x,u^{(k)})})^{-1} : \tau H_b^{s-1} \to \mathbb{R} \oplus \tau H_b^s$
- * To do this, we need
 - (1) Regularity and asymptotics for \Box_q^{-1} , $g = g_0 + O(\tau)$ smooth
 - (2) Do the previous for finite regularity metrics
- * For (1), do the following:
 - · Analyze regularity, not decay, of $\Box_q u = f$ microlocally
 - Use \square_{g_0} to get precise asymptotics
- * For the first part, $\Box_g = G(\tau, x, \tau \partial_\tau, \partial_x) = \operatorname{Op}_b(G(\tau, x, \sigma, \xi))$ where G is in $S^2({}^bT^*\Omega)$
- * The Hamiltonian vector field is a vector field on ${}^{b}T^{*}\Omega$, ∂_{σ} , ∂_{ξ} , $\tau \partial_{\tau}$, ∂_{x} , and is C^{∞} up to $\tau = 0$
- $* H_G = H_{G_0} + O(\tau)$
- * The blowup procedure spreads high frequency waves into lower frequency waves
- * Upshot: radial point estimates; $\|u\|_{\tau^{\alpha}H_{b}^{s}} \lesssim \|\chi u\|_{H^{s}} + \|f\|_{\tau^{\alpha}H_{b}^{s-1}}$
- * If we slide the support of χ to $\tau = 10$ for instance, then we obtain $\|u\|_{\tau^{\alpha}H_b^s} \lesssim \|f\|_{\tau^{\alpha}H_b^{s-1}} + \text{error for } s > \frac{1}{2} + \alpha$
- * Energy estimates yield $||u||_{\tau^{\alpha}L^{2}} \lesssim ||f||_{\tau^{\alpha}L^{2}}$
- * For the second part of (1), we want to understand $\Box_g u = f$ which is equivalent to $\Box_{g_0} u = f (\Box_g \Box_{g_0})u$ where the second term decays like $\tau^{\alpha+1}$
- * We use $\Box_{g_0}^{-1}$ to get $u = O(\tau^{\alpha+1})$ if $f \in C_c^{\infty}$

LECTURER: PETER HINTZ

* Iterate, get $u = u_0 + \tilde{u}$, $\tilde{u} = O(\tau)$ which ultimately yields $(\Box_{g(x,u^{(k)})})^{-1}$: $\tau^{\alpha}H_b^{s-1} \to \mathbb{R} \oplus \tau H_b^s$