

Constant curvature conical metrics

Xuwen Zhu (MSRI / UC Berkeley)

Recent Developments in Microlocal Analysis MSRI, Oct 14 2019

Joint with Rafe Mazzeo and Bin Xu

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Constant Curve Consta

 Ω

 $4 \oplus 14 \oplus 14$

Outline

Deformation rigidity

4 0 8

 \overline{AB}

画像

14.1

Constant curvature metrics on Riemann surfaces

Classical uniformization theorem: for a given Riemann surface, there is a unique (smooth) constant curvature metric

Constant curvature metrics on Riemann surfaces

- Classical uniformization theorem: for a given Riemann surface, there is a unique (smooth) constant curvature metric
- A constant curvature metric with conical singularities is a smooth metric with constant curvature, except near ρ_j the metric is asymptotic to a cone with angle 2πβ*^j*

(Gauss-Bonnet)
$$
\chi(\Sigma, \vec{\beta}) := \chi(\Sigma) + \sum_{j=1}^{k} (\beta_j - 1) = \frac{1}{2\pi}KA
$$

Constant curvature metrics on Riemann surfaces

- Classical uniformization theorem: for a given Riemann surface, there is a unique (smooth) constant curvature metric
- A constant curvature metric with conical singularities is a smooth metric with constant curvature, except near ρ_j the metric is asymptotic to a cone with angle 2πβ*^j*

(Gauss–Bonnet)
$$
\chi(\Sigma, \vec{\beta}) := \chi(\Sigma) + \sum_{j=1}^{k} (\beta_j - 1) = \frac{1}{2\pi}KA
$$

• Near a cone point with angle $2\pi\beta$, in geodesic polar coordinates

$$
g = \begin{cases} dr^2 + \beta^2 r^2 d\theta^2 & K = 0 \quad \text{(flat)}\\ dr^2 + \beta^2 \sin^2 r d\theta^2 & K = 1 \quad \text{(spherical)}\\ dr^2 + \beta^2 \sinh^2 r d\theta^2 & K = -1 \quad \text{(hyperbolic)} \end{cases}
$$

In conformal coordinates $z = (\beta r)^{1/\beta} e^{i\theta}, \quad g = f(z) |z|^{2(\beta-1)} |dz|^2$

4.000.00

 QQ

E K

4 0 8

 Ω

重き

The study of constant curvature conical metrics is related to:

- Magnetic vortices: solitons of gauged sigma-models on a Riemann surface
- Mean Field Equations: models of electro-magnetism
- Toda system: multi-dimensional version
- Higher dimensional analogue: Kähler–Einstein metrics with conical singularities
- Bridge between the (pointed) Riemann moduli spaces: cone angle from 0 to 2π

This subject can be approached in many ways:

- **PDE: singular Liouville equations**
- Complex analysis: developing maps and Schwarzian derivatives
- Synthetic geometry: cut-and-glue

 Ω

イロト イ押 トイラ トイラトー

The study of constant curvature conical metrics is related to:

- Magnetic vortices: solitons of gauged sigma-models on a Riemann surface
- Mean Field Equations: models of electro-magnetism
- Toda system: multi-dimensional version
- Higher dimensional analogue: Kähler–Einstein metrics with conical singularities
- Bridge between the (pointed) Riemann moduli spaces: cone angle from 0 to 2π

This subject can be approached in many ways:

- PDE: singular Liouville equations
- Complex analysis: developing maps and Schwarzian derivatives
- Synthetic geometry: cut-and-glue

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

A singular uniformization problem

Consider the following "conical data":

- *n* distinct points $p = (p_1, \ldots, p_n)$
- Angle data $\vec{\beta} = (\beta_1, \ldots, \beta_n),\; \beta_i \in \mathbb{R}^+ \setminus \{1\}$
- Conformal structure c given by the underlying Riemann surface

Question

Given conical data (p, $\vec{\beta}$, c), does there exist a unique constant curvature conical metric with this data?

When uniformization holds

Theorem (Heins '62, McOwen '88, Troyanov '91, Luo–Tian '92) *For any compact Riemann surface* (*M*, *c*) *and conical data* (\upphi , $\vec{\beta}$) *with* \bullet $\chi(M,\vec{\beta})$ < 0; or $\chi(\pmb{M},\vec{\beta})> \textsf{0},\;\vec{\beta}\in\mathcal{T}\subset(\textsf{0},\textsf{1})^k$

there is a unique constant curvature conical metric with this data.

If $\vec{\beta} \in (0,1)^k$, then there is a well-defined $(6\gamma - 6 + 3k)$ -dimensional *moduli space.*

 Ω

イロト イ押 トイラト イラト

When uniformization holds

Theorem (Heins '62, McOwen '88, Troyanov '91, Luo–Tian '92) *For any compact Riemann surface* (*M*, *c*) *and conical data* (\upphi , $\vec{\beta}$) *with* \bullet $\chi(M,\vec{\beta})$ < 0; or $\chi(\pmb{M},\vec{\beta})> \textsf{0},\;\vec{\beta}\in\mathcal{T}\subset(\textsf{0},\textsf{1})^k$

there is a unique constant curvature conical metric with this data.

Theorem (Mazzeo–Weiss '15)

If $\vec{\beta} \in (0,1)^k$, then there is a well-defined $(6\gamma - 6 + 3k)$ -dimensional *moduli space.*

 Ω

化重新分离

Spherical metrics with large cone angles

- The remaining case: $\chi(M,\vec{\beta}) > 0$, at least one of the angles greater than 2π
- Uniformization fails in this case
- **Existence: constraints on conical data (p,** $\vec{\beta}$ **, c)** Mondello–Panov '16, Chen–Lin '17, Chen–Kuo–Lin–Wang '18. . .
- **Uniqueness: usually fails** Chen–Wang–Wu–Xu '14, Eremenko '17, Bartolucci–De Marchis–Malchiodi '11 ...
- Deformation: obstructions exist [Z '19]
- Literature: Troyanov '91, Bartolucci & Tarantello '02, Bartolucci & Carlotto & De Marchis & Malchiodi '11–'19, Chen & Kuo & Lin & Wang '02–'19, Umehara & Yamada '00, Eremenko '00, Eremenko & Gabrielov & Tarasov '01–'19, Xu '14–'19, Mondello & Panov '16–'17, Dey '17

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Spherical metrics with large cone angles

- The remaining case: $\chi(M,\vec{\beta}) > 0$, at least one of the angles greater than 2π
- Uniformization fails in this case
- **Existence:** constraints on conical data (p, $\vec{\beta}$, c) Mondello–Panov '16, Chen–Lin '17, Chen–Kuo–Lin–Wang '18. . .
- Uniqueness: usually fails Chen–Wang–Wu–Xu '14, Eremenko '17, Bartolucci–De Marchis–Malchiodi '11 . . .
- Deformation: obstructions exist [Z '19]

Literature: Troyanov '91, Bartolucci & Tarantello '02, Bartolucci & Carlotto & De Marchis & Malchiodi '11–'19, Chen & Kuo & Lin & Wang '02–'19, Umehara & Yamada '00, Eremenko '00, Eremenko & Gabrielov & Tarasov '01–'19, Xu '14–'19, Mondello & Panov '16–'17, Dey '17

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Spherical metrics with large cone angles

- The remaining case: $\chi(M,\vec{\beta}) > 0$, at least one of the angles greater than 2π
- Uniformization fails in this case
- **Existence:** constraints on conical data (p, $\vec{\beta}$, c) Mondello–Panov '16, Chen–Lin '17, Chen–Kuo–Lin–Wang '18. . .
- Uniqueness: usually fails Chen–Wang–Wu–Xu '14, Eremenko '17, Bartolucci–De Marchis–Malchiodi '11 . . .
- Deformation: obstructions exist [Z '19]
- Literature: Troyanov '91, Bartolucci & Tarantello '02, Bartolucci & Carlotto & De Marchis & Malchiodi '11–'19, Chen & Kuo & Lin & Wang '02–'19, Umehara & Yamada '00, Eremenko '00, Eremenko & Gabrielov & Tarasov '01–'19, Xu '14–'19, Mondello & Panov '16–'17, Dey '17

 Ω

(ロ) (*同*) (ヨ) (ヨ)

Outline of the main result

Our results provide new understanding of the local structure of the moduli space where it is not smoothly parametrized:

Theorem (Mazzeo–Z '19)

- **•** The local deformation with respect to $(c, \mathfrak{p}, \vec{\beta})$ has rigidity precisely $\textit{when} \ 2 \in \mathrm{Spec}(\Delta_g^{\mathrm{Fr}})$ *;*
- *It can be "desingularized" by adding more coordinates via splitting of cone points.*

Understanding this problem through a nonlinear PDE:

{Constant curvature *K* conical metrics} \uparrow f Solutions to the Liouville equation $\Delta_{g_0} u - K e^{2u} + K_{g_0} = 0$ \mathcal{L}

Here g_0 is either a smooth metric (then *u* has singularities); or a conical metric with the given conical data (then μ is bounded).

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Constant Curve Constant Curve Press, Oct 14 2019 9/24

Outline of the main result

Our results provide new understanding of the local structure of the moduli space where it is not smoothly parametrized:

Theorem (Mazzeo–Z '19)

- **•** The local deformation with respect to $(c, \mathfrak{p}, \vec{\beta})$ has rigidity precisely $\textit{when} \ 2 \in \mathrm{Spec}(\Delta_g^{\mathrm{Fr}})$ *;*
- *It can be "desingularized" by adding more coordinates via splitting of cone points.*

Understanding this problem through a nonlinear PDE:

{Constant curvature K conical metrics}
\n
$$
\updownarrow
$$
\nSolutions to the Liouville equation
\n
$$
\Delta_{g_0} u - Ke^{2u} + K_{g_0} = 0
$$

Here g_0 is either a smooth metric (then *u* has singularities); or a conical metric with the given conical data (then *u* is bounded).

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Oct 14 2019 9 / 24

 \cap \cap

Setup

- From now on we study spherical metrics $(K = 1)$
- \bullet We fix the Riemann surface (M, c) and do not vary cone angles
- $\mathcal{U}(\vec{\beta})$: the space of all cone metrics (not necessarily spherical) with cone angles $\vec{\beta}\in\mathbb{R}^n$
- $\mathbf{p}:\mathscr{U}(\vec{\beta})\rightarrow \mathsf{M}^n$ the positions of the cone points
- \bullet $\mathcal{S}(\vec{\beta}) \subset \mathcal{U}(\vec{\beta})$: the set of spherical cone metrics
- In general $\mathbf{p}: \mathcal{S}(\vec{\beta}) \rightarrow M^n$ is not a local diffeomorphism: we cannot parametrize elements of $\mathcal{S}(\vec{\beta})$ by cone point positions [Z '19]
- **•** Is $p(S(\vec{\beta}))$ a submanifold with the tangent space prescribed by linear constraints? We don't know for the original question, but we deal with a related one when we allow to split cone points

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Setup

- From now on we study spherical metrics $(K = 1)$
- \bullet We fix the Riemann surface (M, c) and do not vary cone angles
- $\mathcal{U}(\vec{\beta})$: the space of all cone metrics (not necessarily spherical) with cone angles $\vec{\beta}\in\mathbb{R}^n$
- $\mathbf{p}:\mathscr{U}(\vec{\beta})\rightarrow \mathsf{M}^n$ the positions of the cone points
- \bullet $S(\vec{\beta}) \subset \mathcal{U}(\vec{\beta})$: the set of spherical cone metrics
- In general $\mathbf{p}: \mathcal{S}(\vec{\beta}) \rightarrow \mathcal{M}^n$ is not a local diffeomorphism: we cannot parametrize elements of $S(\vec{\beta})$ by cone point positions [Z '19]
- **•** Is $p(S(\vec{\beta}))$ a submanifold with the tangent space prescribed by linear constraints? We don't know for the original question, but we deal with a related one when we allow to split cone points

 QQQ

 (0.123×10^{-14})

Deformation and linear obstructions

- Fix $g_0\in \mathcal{S}(\vec{\beta}).$ We study local deformations $g_t:(-\epsilon,\epsilon)\rightarrow \mathcal{S}(\vec{\beta})$ and cone point positions $\mathfrak{p}_t = \mathfrak{p}(g_t)$.
- We have $g_t = e^{2u_t} g_0$ where u_t solve the singular Liouville equation

$$
\Delta_{g_0} u_t - e^{2u_t} + 1 = 0
$$

Linearized equation: $(\Delta_{g_0} - 2)\nu = 0$ where $\nu := \partial_t u_t|_{t=0}$

- If *v* ∈ ker(Δ $_{g_0}^{\rm Fr}$ 2) where $\Delta_{g_0}^{\rm Fr}$ is the Friedrichs Laplacian, then $\partial_t \mathfrak{p}_t|_{t=0} = 0$: obstruction to injectivity of **p**.
- ∂*t*p*^t* |*t*=⁰ gives the singular terms of *v* (those not in the Friedrichs domain). If ker($\Delta_{g_0}^{\text{Fr}}$ $-$ 2) \neq 0 then it might be impossible to find a solution with given singular terms: obstruction to surjectivity of **p**.
- We say $\vec{\mathcal{A}}(=\partial_t\mathfrak{p}_t|_{t=0})$ satisfies linear constraints if there exists a solution *v* to $(\Delta_{g_0} - 2)v = 0$ with singular terms prescribed by \vec{A} .

 QQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Deformation and linear obstructions

- Fix $g_0\in \mathcal{S}(\vec{\beta}).$ We study local deformations $g_t:(-\epsilon,\epsilon)\rightarrow \mathcal{S}(\vec{\beta})$ and cone point positions $\mathfrak{p}_t = \mathfrak{p}(g_t)$.
- We have $g_t = e^{2u_t} g_0$ where u_t solve the singular Liouville equation

$$
\Delta_{g_0} u_t - e^{2u_t} + 1 = 0
$$

Linearized equation: $(\Delta_{g_0} - 2)\nu = 0$ where $\nu := \partial_t u_t|_{t=0}$

- If $v\in\ker(\Delta_{g_0}^{\text{Fr}}-2)$ where $\Delta_{g_0}^{\text{Fr}}$ is the Friedrichs Laplacian, then $\partial_t \mathfrak{p}_t|_{t=0} = 0$: obstruction to injectivity of **p**.
- ∂*t*p*^t* |*t*=⁰ gives the singular terms of *v* (those not in the Friedrichs domain). If ker($\Delta_{g_0}^{\text{Fr}}$ $-$ 2) \neq 0 then it might be impossible to find a solution with given singular terms: obstruction to surjectivity of **p**.
- We say $\vec{\mathcal{A}}(=\partial_t\mathfrak{p}_t|_{t=0})$ satisfies linear constraints if there exists a solution *v* to $(\Delta_{g_0} - 2)v = 0$ with singular terms prescribed by \vec{A} .

 QQ

 $A \cap A \rightarrow A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Deformation and linear obstructions

- Fix $g_0\in \mathcal{S}(\vec{\beta}).$ We study local deformations $g_t:(-\epsilon,\epsilon)\rightarrow \mathcal{S}(\vec{\beta})$ and cone point positions $\mathfrak{p}_t = \mathfrak{p}(g_t)$.
- We have $g_t = e^{2u_t} g_0$ where u_t solve the singular Liouville equation

$$
\Delta_{g_0} u_t - e^{2u_t} + 1 = 0
$$

Linearized equation: $(\Delta_{g_0} - 2)\nu = 0$ where $\nu := \partial_t u_t|_{t=0}$

- If $v\in\ker(\Delta_{g_0}^{\text{Fr}}-2)$ where $\Delta_{g_0}^{\text{Fr}}$ is the Friedrichs Laplacian, then $\partial_t \mathfrak{p}_t|_{t=0} = 0$: obstruction to injectivity of **p**.
- ∂*t*p*^t* |*t*=⁰ gives the singular terms of *v* (those not in the Friedrichs domain). If ker $(\Delta_{g_0}^{\text{Fr}} - 2) \neq 0$ then it might be impossible to find a solution with given singular terms: obstruction to surjectivity of **p**.
- We say $\vec{\mathcal{A}}(=\partial_t\mathfrak{p}_t|_{t=0})$ satisfies l<mark>inear constraints</mark> if there exists a solution *v* to $(\Delta_{q_0} - 2)v = 0$ with singular terms prescribed by \vec{A} .

 QQQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Is 2 an eigenvalue of Δ^{Fr}?

- When $\vec{\beta} \in (0,1)^k$: the only spherical metrics with eigenvalue 2 are footballs (Bochner's technique / integration by parts)
- When at least one $\beta_i > 1$: the argument would not work any more
- Examples of metrics with 2 \in Spec(Δ_g^Fr): footballs, "heart", branched covers of the standard sphere
- Metrics with reducible monodromy all satisfy 2 $\in {\rm Spec}(\Delta_g^{\rm Fr})$
- These eigenfunctions generate gauge transformations [Xu–Z '19]

Is 2 an eigenvalue of Δ^{Fr}?

- When $\vec{\beta} \in (0,1)^k$: the only spherical metrics with eigenvalue 2 are footballs (Bochner's technique / integration by parts)
- When at least one β*ⁱ* > 1: the argument would not work any more
- Examples of metrics with 2 \in Spec(Δ_g^{Fr}): footballs, "heart", branched covers of the standard sphere
- Metrics with reducible monodromy all satisfy 2 $\in {\rm Spec}(\Delta_g^{\rm Fr})$
- These eigenfunctions generate gauge transformations [Xu–Z '19]

Is 2 an eigenvalue of Δ^{Fr}?

- When $\vec{\beta} \in (0,1)^k$: the only spherical metrics with eigenvalue 2 are footballs (Bochner's technique / integration by parts)
- When at least one β*ⁱ* > 1: the argument would not work any more
- Examples of metrics with 2 \in Spec(Δ_g^{Fr}): footballs, "heart", branched covers of the standard sphere
- Metrics with reducible monodromy all satisfy 2 $\in {\rm Spec}(\Delta_g^{\rm Fr})$
- These eigenfunctions generate gauge transformations [Xu–Z '19]

 Ω

A BAK BAK B

Two examples where $2 \in \operatorname{Spec}(\Delta_g^{\text{Fr}})$

- There is one eigenfunction $\Delta_g^{\mathrm{Fr}} \phi = 2 \phi$
- Take coordinate *z* centered on the north pole, then the complex gradient vector field of ϕ is given by −*z*∂*^z* , which corresponds to conformal dilations

Two examples where $2 \in \operatorname{Spec}(\Delta_g^{\text{Fr}})$

- There is one eigenfunction $\Delta_g^{\mathrm{Fr}} \phi = 2 \phi$
- Take coordinate *z* centered on the north pole, then the complex gradient vector field of ϕ is given by −*z*∂*^z* , which corresponds to conformal dilations
- The eigenfunctions on two footballs glue to a good eigenfunction ψ

- The complex gradient vector field of ψ again corresponds to conformal dilations
- This generates a family of spherical metrics with the same β
- Rigidity: this family gives all spherical metrics with such $\vec{\beta}$ [Z '19]

 Ω

医单位 医单

A schematic picture

A schematic picture

 290

Theorem (Mazzeo–Z, '19)

Let (M, g_0) *be a spherical conic metric. Let* $N = \sum_{j=1}^k \max\{[\beta_j], 1\}$ *. Let l* be the multiplicity of the eigenspace of $\Delta_{g_0}^\mathrm{Fr}$ with eigenvalue 2. There *are three cases:* $\ell = 0, 1 \leq \ell \leq 2N, \ell = 2N$.

Theorem (Mazzeo–Z, '19)

Let (M, g_0) *be a spherical conic metric. Let* $N = \sum_{j=1}^k \max\{[\beta_j], 1\}$ *. Let l* be the multiplicity of the eigenspace of $\Delta_{g_0}^\mathrm{Fr}$ with eigenvalue 2. There *are three cases:* $\ell = 0, 1 \leq \ell \leq 2N, \ell = 2N$.

1 *(Local freeness) If* $\ell = 0$, then $q_0 \in S(\vec{\beta})$ has a smooth *neighborhood parametrized by cone positions.*

 Ω

あきする 新

Theorem (Mazzeo–Z, '19)

Let (M, g_0) *be a spherical conic metric. Let* $N = \sum_{j=1}^k \max\{[\beta_j], 1\}$ *. Let l* be the multiplicity of the eigenspace of $\Delta_{g_0}^\mathrm{Fr}$ with eigenvalue 2. There *are three cases:* $\ell = 0, 1 \leq \ell \leq 2N, \ell = 2N$.

- **1** *(Local freeness) If* $\ell = 0$, then $g_0 \in S(\vec{\beta})$ has a smooth *neighborhood parametrized by cone positions.*
- **2** *(Partial rigidity)* If $1 \leq \ell \leq 2N$, then there exists a $2N \ell$ *dimensional p-submanifold* $X \in \mathcal{E}_N$ *that parametrizes the cone position of nearby metrics.*

 Ω

イロト イ押ト イヨト イヨト

Theorem (Mazzeo–Z, '19)

Let (M, g_0) *be a spherical conic metric. Let* $N = \sum_{j=1}^k \max\{[\beta_j], 1\}$ *. Let l* be the multiplicity of the eigenspace of $\Delta_{g_0}^\mathrm{Fr}$ with eigenvalue 2. There *are three cases:* $\ell = 0, 1 \leq \ell \leq 2N, \ell = 2N$.

- **1** *(Local freeness) If* $\ell = 0$, then $g_0 \in S(\vec{\beta})$ has a smooth *neighborhood parametrized by cone positions.*
- 2 *(Partial rigidity) If* $1 < \ell < 2N$, then there exists a $2N \ell$ *dimensional p-submanifold* $X \in \mathcal{E}_N$ *that parametrizes the cone position of nearby metrics.*
- \bullet *(Complete rigidity) If* $\ell = 2N$, then there is no nearby spherical *cone metric obtained by moving or splitting the cone points of* q_0 *.*

 Ω

イロト イ押ト イヨト イヨト ニヨ

Cone points collision

- To set up the nonlinear analysis, one needs to understand the splitting (or merging) of cone points
- We developed an \mathcal{C}^{∞} model that encodes information of such behaviors for all constant curvature conical metrics (not only spherical)
- Scale back the distance between two cone points ("blow up")

Cone points collision

- To set up the nonlinear analysis, one needs to understand the splitting (or merging) of cone points
- We developed an \mathcal{C}^{∞} model that encodes information of such behaviors for all constant curvature conical metrics (not only spherical)
- Scale back the distance between two cone points ("blow up")

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Concursion Content 16 / 24

When two points collide

- Scale back the distance between two cone points ("blow up")
- Half sphere at the collision point, with two cone points over the half sphere:

Flat metric on the half sphere, and curvature *K* metric on the original surface

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Concursion Content 17 / 24

Iterative structure

Xuwen Zhu (MSRI / UC Berkeley) Constant curvature conical metrics Constant CO 0.14 2019 18 / 24

4 0 8 1

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A}

э

Þ

 QQ

Iterative structure

- "bubble over bubble" structure
- Higher codimensional faces from deeper scaling
- **Flat conical metrics on all the new faces**

• Iterative singular structures: Albin & Leichtnam & Mazzeo & Piazza '09-'19, Degeratu–Mazzeo '14, Kottke–Singer '15-'18, Albin–Gell-Redman '17, Albin–Dimakis–Melrose '19, . Ω

Resolution of the configuration space

This "bubbling" process can be expressed in terms of blow-up of product $M^k \times M \to M^k$

Figure: "Centered" projection of $C_2 \rightarrow C_2$

Results about fiber metrics

Theorem (Mazzeo–Z, '17)

For anv^{} given* $\vec{\beta}$, the family of constant curvature metrics with conical *singularities is polyhomogeneous on this resolved space.*

- \bullet *The metric family can be hyperbolic / flat (with any cone angles), or spherical (with angles less than 2π , except footballs)
- Solving the curvature equation uniformly

$$
\Delta_{g_0} u - K e^{2u} + K_{g_0} = 0
$$

- The bubbles with flat conical metrics represent the asymptotic properties of merging cones
- We then applied this machinery to understand the big cone angle case [Mazzeo–Z '19]

 Ω

イロト イ押ト イヨト イヨト

Linear constraints given by eigenfunctions

- The splitting creates extra dimensions, which fills up the cokernel of the linearized operator Δ_g^Fr – 2
- The direction of admissible splitting is determined by the expansion of the eigenfunctions
- $\mathsf{Recall}~\mathcal{N}=\sum_{j=1}^k\mathsf{max}\{[\beta_j],1\}.$ An eigenfunction gives a 2 N -tuple \vec{b}
- The tangent of splitting directions are given by vectors \vec{A} that are orthogonal to all such \vec{b} (linear constraints)
- The bigger dimension of eigenspace, the more constraint on the direction of splitting
- \bullet How to get the splitting direction from \vec{A} : "almost" factorizing polynomial equations

 Ω

イロト イ押ト イヨト イヨ

Linear constraints given by eigenfunctions

- The splitting creates extra dimensions, which fills up the cokernel of the linearized operator Δ_g^Fr – 2
- The direction of admissible splitting is determined by the expansion of the eigenfunctions
- Recall $\mathcal{N} = \sum_{j=1}^k \max\{[\beta_j],1\}.$ An eigenfunction gives a 2 N -tuple \vec{b}
- The tangent of splitting directions are given by vectors \vec{A} that are orthogonal to all such \vec{b} (linear constraints)
- The bigger dimension of eigenspace, the more constraint on the direction of splitting
- \bullet How to get the splitting direction from \vec{A} : "almost" factorizing polynomial equations

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Linear constraints given by eigenfunctions

- The splitting creates extra dimensions, which fills up the cokernel of the linearized operator Δ_g^Fr – 2
- The direction of admissible splitting is determined by the expansion of the eigenfunctions
- Recall $\mathcal{N} = \sum_{j=1}^k \max\{[\beta_j],1\}.$ An eigenfunction gives a 2 N -tuple \vec{b}
- \bullet The tangent of splitting directions are given by vectors \vec{A} that are orthogonal to all such \vec{b} (linear constraints)
- The bigger dimension of eigenspace, the more constraint on the direction of splitting
- \bullet How to get the splitting direction from \vec{A} : "almost" factorizing polynomial equations

 Ω

 $A \oplus A \oplus A \oplus A \oplus A \oplus A \oplus B$

An example: open-heart surgery

- We obtain a deformation rigidity for the "heart"
- The cone point with angle 4π is split into two separate points
- In the equal splitting case: $4\pi \rightarrow (3\pi, 3\pi)$
- The spectral data dictates which splitting is possible:

Thank you for your attention!

重

 299

E

KON KARNIKA