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The Schrödinger equation on domains
Let Ω be a domain of dimension d ≥ 2, ∆ the Laplace operator :

i∂tu −∆u = 0, in Ω, u|t=0 = u0, u|∂Ω = 0 if ∂Ω 6= ∅

[(Blair-)Smith-Sogge; Seeger; Staffilani-Tataru; Koch-Tataru; Smith-Tataru;
Burq-Gérard-Tzvetkov; Burq-Lebeau-Planchon; Planchon-Vega; Anton, etc ]

I Ω = Rd ⇒ ‖e±it∆Rd ‖L1(Rd )→L∞(Rd ) ≤ C(d)t−d/2.

I On bounded domains : NO satisfactory estimates to deal with
important applications (cubic NLS on a 3D ball is not
well-understood in the natural energy space...)

I Compact manifolds (even when ∂Ω = ∅): eventually a loss will
occur, due to the volume being finite;

I ∂Ω = ∅ ⇒ replace the exact formula by a local parametrix in
semi-classical time; deal with wavelength sized intervals;

I ∂Ω 6= ∅ ⇒ starting point : knowledge of a ”good” parametrix
Available parametrices (very efficient for propagation of
singularities) : [Melrose-Taylor; Melrose-Sjöstrand; Eskin]



Model for convex boundaries in 2D

Unit disk: {r ≤ 1}
∆disk = ∂2

r + 1
r2∂

2
θ

Model domain:
Ω2 = {(x , y), x > 0, y ∈ R}
∆F = ∂2

x + (1 + x)∂2
y

Disk

Model domain

(Ωd=2,∆F ) = the Friedlander model domain :
I good model for a strictly convex (as first approximation of the

disk : take r = 1− x/2, θ = y )
I Fourier transform (y → θ) : −∆F becomes −∂2

x + (1 + x)θ2

I for θ 6= 0⇒ positive, self-adjoint, with eigenfunctions {ek (x , θ)}k
= Hilbert basis on L2(R+)



Sharp dispersion for semi-classical Schrödinger on Friedlander domain

Let h ∈ (0, 1], 0 < a . 1 and let the semi-classical Schrödinger equation:

ih∂2
t u − h2∆F u = 0 on Ωd , u|t=0 = χ(hDy )δx=a,y=0, u|∂Ωd = 0.

Theorem: ([I,2019] For all 0 < a . 1, h ∈ (0,1] and t ∈ (0,1] we have:
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I for every t ∈ (h, 1] AND every th1/3 < a . 1 the bound is sharp :
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Staring point: construction of a parametrix using spectral decomposition, d=2

I Fourier transform in the tangential variable y :

u(t , x , y) =

∫
R

ei(yθ+htθ2)χ(hθ)v(t , x , θ) dθ ,

where, for x ≥ 0,(
ih∂t + h2(−∂2

x + xθ2)
)

v(t , x ,h) = 0, v|x=0 = 0, v|t=0 = δx=a.

I Recall (−∂2
x + xθ2) has eigenfunctions {ek (x , θ)}k with

eigenvalues λk (θ): the Dirac distribution on R+ reads as

δx=a =
∑
k≥1

ek (x , θ)ek (a, θ),

which yields

v(t , x , θ) =
∑
k≥1

eihtλk (θ)χ(hθ)ek (x , θ)ek (a, θ).

I Take t =
√

aT and x = aX , then T ∈ [1,1/
√

a] and X ∈ [0,1].
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Spectral decomposition of −∂2
x + xθ2, θ 6= 0, x ≥ 0, with Dirichlet on {x = 0}

Let −∂2
x + xθ2, θ 6= 0 with eigenfunctions and eigenvalues:

ek (x , θ) =
θ1/3√
L′(ωk )

Ai
(
θ2/3x − ωk

)
, with λk (θ) = ωkθ

4/3,

WHERE θ ' 1
h AND

A±(ω) = e∓iπ/3Ai(e∓iπ/3ω), Ai(−ω) = A+(ω) + A−(ω),

L(ω) = π + i log
A−(ω)

A+(ω)
, for ω ∈ R .

I L is real analytic and strictly increasing ;

I L(ω) = 4
3ω

3
2 − B(ω

3
2 ) , for ω ≥ 1 , B(ω3/2) '

∑
j≥1 bjω

−3j/2;

I Ai(−ωk ) = 0 iff L(ωk ) = 2πk and L′(ωk ) =
∫∞

0 (Ai)2(x − ωk ) dx ;

I {(−ωk )}k∈N∗ are the zeros of Airy, ωk ' k2/3(1 + O(k−1)) .



Bouncing ping-pong ball

Consider the semi-classical 1D Schrödinger with potential on the half line :

ih∂tV − h2∂2
xxV + xV = 0, x > 0; V |x=0 = 0, V |t=0 = δx=a.

I Let t =
√

aT and x = aX and set λ := a3/2

h ;

I ek (X , λ) = λ1/3√
L′(ωk )

Ai(λ2/3X − ωk ), λk (h) = h−4/3ωk ;

I In the new variables

V (T ,X ) =
∑

k

eiλT (
ωk
λ2/3 )ek (X , λ)ek (1, λ).

(indeed htλk ( 1
h ) = hth−4/3ωk = Tωk

√
ah−1/3 = Tλ1/3ωk = λT ( ωk

λ2/3 ))

I If θ = η
h , η ' 1 : eigenvalues λk (h) = (h/η)−4/3ωk , then change of

variables ω = (ηλ)2/3α. Same formula for V with η2T instead of T .



Airy - Poisson formula (from ”gallery modes” to oscillating integrals)

Lemma : In D′(Rω), one has∑
N∈Z

e−iNL(ω) = 2π
∑

k∈N∗

1
L′(ωk )

δ(ω − ωk ) .

In other words, for φ(ω) ∈ C∞0 ,∑
N∈Z

∫
e−iNL(ω)φ(ω) dω = 2π

∑
k∈N∗

1
L′(ωk )

φ(ωk ) .



Two formulas for V : (using Airy-Poisson)

I in terms of the eigenfunctions
{

ek (X , λ) = λ1/3√
L′(ωk )

Ai(λ2/3X − ωk )
}

V (T ,X ) =
∑
k≥1

eiλT (
ωk
λ2/3 ) λ2/3

L′(ωk )
Ai(λ2/3X − ωk )Ai(λ2/3 − ωk ).

I as a sum over the reflections on the boundary :

V (T ,X ) =
∑
N∈Z

∫
R

eiλT ( ω

λ2/3 )−iNL(ω)
λ2/3Ai(λ2/3X−ω)Ai(λ2/3−ω)

dω
2π

.

I Duality between k and N: same number if a ' (th)1/2 (iff T ' λ).

I Main contribution : ωk ' λ2/3, hence k ' λ; for ωk > 2λ2/3 use the
asymptotic of Airy function Ai(−z) '

∑
± z−1/4e±z3/2

.



Parametrix in terms of reflections (ht)1/2 . a

V (T ,X ) =
∑

N

VN(T ,X ),

VN(T ,X ) = λ2/3
∫

eiλ(T ( ω

λ2/3 )− N
λ

L(ω))
χ(

ω

λ2/3 )Ai(λ2/3X − ω)Ai(λ2/3 − ω)dω .

Using Ai(−z) =
∫

ei( s3
3 −sz)ds , L(ω) = 4

3ω
3/2 − B(ω3/2), gives

VN(T ,X ) = λ2
∫

eiλ(Tα− 4
3 Nα3/2+ N

λB(λα3/2)+ s3
3 +s(X−α)+σ3

3 +σ(1−α))χ(α)dαdsdσ .

I Stationary phase in α : T − (s + σ) ' 2N
√
αc , |∂2

αΦN ||αc ' N√
αc

;

I Critical value : for K := T
2N ' 1 on support χ, |s|, |σ| . 1

ΦN(αc) =
s3

3
+ s(X − K 2) +

σ3

3
+ σ(1− K 2)

+
K
2N

(s + σ)2 − 1
12N2 (s + σ)3.



Proposition 1 For N ≥ λ1/3, we have

|VN(T ,X )| . λ2/3

((N/λ1/3)1/2 + λ1/6|T − 2N|1/2)
.

Proposition 2 For N < λ1/3 and |T − 2N| & 1/N, we have

|VN(T ,X )| . λ2/3

(1 + |N(T − 2N)|1/4)
. (1)

Proposition 3 For N < λ1/3 and |T − 2N| . 1/N, we have

|VN(T ,X )| . λ2/3

(N1/4λ−1/12 + |N(T − 2N)|1/6)
. (2)

I When T = 2N ≤ λ1/3, X = 1 : |VN(T ,1)| ' λ2/3

N1/4λ−1/12 ' λ3/4

T 1/4 ;



I For T < λ1/3 (any T , even larger than λ):

sup
X
|V (T ,X )| ≤ |V (T ,1)| ≤

∑
N'T

|VN(T ,1)| . λ2/3λ
1/12

T 1/4 +λ2/3 ' λ3/4

T 1/4 ,

|V (2N,1)| ' λ3/4

T 1/4 |T =2N ;

I For T ≥ λ1/3 (any T , even larger than λ):

|V (T ,X )| ≤ |V (T ,1)| ≤
∑
N'T

|VN(T ,1)| .
√
λT

I T ' λ1/3 means t√
a ' ( a3/2

h )1/3 = a1/2

h1/3 , hence a ' th1/3;

I T ' λ means t√
a ≥

a3/2

h , hence a ' (th)1/2;

I if T > λ⇒ more terms in the sum over N than in the sum over k !
use ek to find |V (T ,X )| . λ (instead of

√
λT for T > λ).



What about u ?

I When θ = η
h : integration in η gives ( h

t )1/2 and y + 2tη ' 0;

I After integration in α, replace K = T
2N by K̃ = Y

4N , Y = − y√
a ;

I u becomes a sum over N where T is now replaced by Y/2;

I For every T < λ1/3, if Y = 4Ñ + O(1), then in this sum only
N = Ñ can provide the worst contribution and the sum of all the
other terms is smaller that the value at N = Ñ.



Parametrix in terms of modes ek : a . (ht)1/2

Recall

V (T ,X ) =
∑
k≥1

eiλT (
ωk
λ2/3 ) λ2/3

L′(ωk )
Ai(λ2/3X − ωk )Ai(λ2/3 − ωk ).

Lemma: There exists C0 such that for L ≥ 1 the following holds true

sup
b∈R

( ∑
1≤k≤L

1
L′(ωk )

Ai2(b − ωk )
)
≤ C0L1/3,

where recall L′(ωk ) ' √ωk .

I Since the main contribution of the sum over k comes from k ' λ,
take L ' 2λ and apply CS to deduce |V (T ,X )| . λ;

I Notice that λ is (much) better than
√
λT for T > λ...

I When θ = η/h, integrate over η taking advantage that the Airy
terms can be seen as part of the symbol (since they do not
oscillate much in this regime);

I For k > L ' 2λ : this corresponds to the ”transverse” part in u.




