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The Schrodinger equation on domains

Let © be a domain of dimension d > 2, A the Laplace operator :
Oty —Au=0,inQ, Ulmo=Uy, Ulga=0if0Q#0)

[(Blair-)Smith-Sogge; Seeger; Staffilani-Tataru; Koch-Tataru; Smith-Tataru;
Burg-Gérard-Tzvetkov; Burg-Lebeau-Planchon; Planchon-Vega; Anton, etc ]

> Q=R = || e8| 1 (o) o) < C(d)t792.

» On bounded domains : NO satisfactory estimates to deal with
important applications (cubic NLS on a 3D ball is not
well-understood in the natural energy space...)

» Compact manifolds (even when 9Q = (): eventually a loss will
occur, due to the volume being finite;

» 9Q = ) = replace the exact formula by a local parametrix in
semi-classical time; deal with wavelength sized intervals;

> 00 # ) = starting point : knowledge of a "good” parametrix
Available parametrices (very efficient for propagation of
singularities) : [Melrose-Taylor; Melrose-Sjéstrand; Eskin]




Model for convex boundaries in 2D

Unit disk: {r < 1} Model domain:
Agisk = 8,2 + :—285 Qo = {(X,y),X > O,y S R}
Ap =02+ (14 x)05

TN N NN

Model domain
Disk

(Qg—2, Af) = the Friedlander model domain :

» good model for a strictly convex (as first approximation of the
disk:take r=1—-x/2,0 =y)

» Fourier transform (y — ) : —Ar becomes —92 + (1 + x)6§?

» for § # 0 = positive, self-adjoint, with eigenfunctions {ex(x, 6)}«
= Hilbert basis on L2(R.)



Sharp dispersion for semi-classical Schrédinger on Friedlander domain

Let h € (0,1],0 < a < 1 and let the semi-classical Schrédinger equation:
ihdfu — P AFu=00nQq, Ul—o = x(hDy)dx-ay-0, Ulog, =0.
Theorem: ([1,2019] Forall0 < a<1,he (0,1]and t € (0,1] we have:

1 h, a1 t
UllLe(y) S Wm|n{1,(?) 2 'Yh,a(ﬁ)}a

Vva, if a < (th)'/?,
where yha(f) = 3 (2)'/2, if (th)'/2 S a S th'/3,
(hayt/4 it th'/® <a<1.



Sharp dispersion for semi-classical Schrédinger on Friedlander domain

Let h € (0,1],0 < a < 1 and let the semi-classical Schrédinger equation:
ihdfu — P AFu=00nQq, Ul—o = x(hDy)dx-ay-0, Ulog, =0.
Theorem: ([1,2019] Forall0 < a<1,he (0,1]and t € (0,1] we have:

1 h, a1 t
UllLe(y) S Wm|n{1,(?) 2 'Yh,a(ﬁ)}a

Va, ifas (th)/,
where ha(£) = ¢ (3)'/2, if (th)'/2 S a S th'/3,
(Fay1/4 i th'/s <a< 1.

> for every a < th'/® we have yna(1) < (ht)'/*;

» forevery t ¢ (h,1] AND every th'/® < a < 1 the bound is sharp :

1 h @1 hayi
luOl=@n = 553 7 ()

Q.

» Loss of 1/4 : recall sup | (hD;)e™ "8

< o min(1.(2)

).



Staring point: construction of a parametrix using spectral decomposition, d=2

» Fourier transform in the tangential variable y :
ut xy) = [ @M (mo)v(t,x,60) o
R

where, for x > 0,

(/ha, + (-0 + x92)> V(t, X, h) =0, Vieeo =0, Vo= 0ra



Staring point: construction of a parametrix using spectral decomposition, d=2

» Fourier transform in the tangential variable y :
ut xy) = [ @M (mo)v(t,x,60) o
R
where, for x > 0,

(/ha, + (-0 + x92)> V(t, X, h) =0, Vieeo =0, Vo= 0ra

» Recall (—92 + x6?) has eigenfunctions {ex(x, )}« with
eigenvalues \(¢): the Dirac distribution on R reads as

Sx=a =Y _ ex(x,0)ex(a,0),
k>1

which yields

v(t,x,0) =>_ e x(h)ex(x,0)ex(a.0).
k>1

» Take t = v/aT and x = aX,then T € [1,1//a] and X € [0, 1].



Spectral decomposition of —92 + x02, § # 0, x > 0, with Dirichlet on {x = 0}

Let —92 + x62, 6 # 0 with eigenfunctions and eigenvalues:

o138 .
ex(x,0) = mA/ (92/3x — wk>7 with A (0) = web*/3,

WHERE 6 ~

~ 1 AND
As(w) = T BAi(eT™3y), Ai(-w) = Ay (w) + A_(w),

L(w):w+ilogm, for w e R.

v

L is real analytic and strictly increasing ;
L(w) = $w? — B(w?), for w>1, Bw¥?) =¥, buw /2,
Ai(—wk) = 01iff L(wk) = 2k and L' (wk) =[5~ (A (x — wk) dx ;

{(—wk) }ken~ are the zeros of Airy, wx ~ k2/3(1 + O(k™")) .

v

v

v



Bouncing ping-pong ball

Consider the semi-classical 1D Schrodinger with potential on the half line :

ihofV — Po2V +xV=0,x>0; V|eo=0, V|—o=0x—a

» Let!— /al and x — aX andset \ :— & °;

> ex(X,\) = %Ai(kmx — wi), M(h) = h=43wy;

!(wk

» In the new variables
V(T,X) = Ze’” e (X, Ne(1, ).
(indeed htAx (%) = hth™*/*wy = Twev/ah™""* = TA 2wy, = AT(5%%))
> 10 =1%,1n~1:eigenvalues \c(h) = (h/n)~* 3wy, then change of

variables w = (n\)?/3a.. Same formula for V with 7? T instead of T.



Airy - Poisson formula (from “gallery modes” to oscillating integrals)

Lemma : In D'(R,,), one has

Y e M@ —2x 3 L’ S(w — wk) -
NezZ keN*
In other words, for ¢(w) € Cg°,

Z / ~INL) (w) dw = 27 Z L’(1' o(wk) -

NezZ keN*



Two formulas for V : (using Airy-Poisson)

» in terms of the eigenfunctions {ek(X,/\)z ME Aja2/8x - wk)}

i

ey )\2/3
V(T7X) — ZeIAT(W)Lf‘(wk)AI(/\Zﬁx_ )AI(/\2/3 _Wk)
k>1

» as a sum over the reflections on the boundary :

dw

7

V(T,X):Z/e’”( 78)=INE) \2/3 Aj(\2/3 X — 1)) (N3 —w)
Nez R

» Duality between k and N: same number if a ~ (th)"/2 (iff T ~ \).

» Main contribution : wy ~ )\?/3, hence k ~ ); for wy > 2)2/3 yse the
asymptotic of Airy function Ai(—z) ~ >, z~"/*e** 2



Parametrix in terms of reflections (ht)'/2 < a

X) =3 VulT. X).

AN X — WAV — w)dw.
)\2/3

Using Ai(—2) = [ )ds, L(w) = 3w%2 — B(w®?), gives

VN(TX):)\2/ I)\(TufﬁN(wa/2 NB()\(YS/ )+ 5 +S(X )+ % +rf(1 @) ( )dOde(f.

» Stationary phaseina: T — (s+ o) ~ 2N,/ag, |2 On||a, =~ \/’}C;
» Critical value : for K := 55 ~ 1 on support x;, |s|, |o| < 1
53 2 0'3 2
q)N(Oéc):?-f—S(X—K )+§—|—0(1 - K?)
K o 1
—|—W(S—|—o) 12N2(S+U)



Proposition 1 For N > \'/3 we have

/\2/3
<
IWN(T, X)| S ((N/XT/3)1/2 L XT/6|T — 2N[1/2)

Proposition 2 For N < A% and | T — 2N| > 1/N, we have

/\2/3
Wn(T, X 1
Proposition 3 For N < A% and | T — 2N| < 1/N, we have
)\2/3
|Vn(T, X) )

IS (NVAX=1712 L [N(T — 2N)|/8)

> When T=2N < A'/3, X =1 |V(T.1)| = g =~ 3



For T < \'/3 (any T, even larger than \):

/\ )\3/4
sup|V(T X< V(T )< IWN(T ) S NP At +N2/8 Fia
Nx~T
3/4
VN, N = w7zl r=an:

For T > A'/3 (any T, even larger than \):

V(T X) < V(T 1)< > [Wn(T, 1) S VAT

N~T
T ~ \'/3 means % ~ ( 3,7/2)‘/3 h1/3, hence a ~ th'/3;
T ~ )\ means - > T/ hence a ~ (th)'/?;

if T > XA = more terms in the sum over N than in the sum over k!
use e to find |V(T, X)| < A (instead of VAT for T > ).



What about u ?
» When ¢ = 7 : integration in n gives (£)'/2 and y + 2ty ~ 0;

> After integration in , replace K = 5, by K = %, Y = VL

» ubecomes a sum over N where T is now replaced by Y/2;
» Forevery T < A'/3,if Y = 4N + O(1), then in this sum only

N = N can provide the worst contribution and the sum of all the
other terms is smaller that the value at N = N.



Parametrix in terms of modes e : a < (ht)'/?

Recall

)2/3
= YR )A'(AZ/SX — w)AINR = wy).

(A}
k>1 k

Lemma: There exists Cy such that for L > 1 the following holds true

sup( > L’ ?(b— wk)) < Gl

beR ™y p<y

where recall L' (wg) ~ \/wg.

>

Since the main contribution of the sum over k comes from k ~ ),
take L ~ 2) and apply CS to deduce |V(T, X)| < A;

Notice that A is (much) better than VAT for T > A...

When 6 = n/h, integrate over 1 taking advantage that the Airy
terms can be seen as part of the symbol (since they do not
oscillate much in this regime);

For k > L ~ 2 : this corresponds to the "transverse” part in u.





