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Non-linearity helps in solving inverse problems!

I Hyperbolic case: Kurylev–Lassas–Uhlmann, 2018,
Lassas–Uhlmann–Wang, 2019, Sá Barreto–Wang, 2018,
Chen–Lassas–Oksanen–Paternain, 2019, Hintz–Uhlmann,
2018, ...,

I Elliptic case (full data problem): Feizmohammadi–Oksanen;
Lassas–Liimatainen–Lin–Salo, 2019

A common feature of these works is that the presence of a nonlinear-
ity allows one to solve inverse problems for non-linear equations in
cases where the corresponding inverse problem in the linear setting
is open.

The purpose of the talk is to point out that the same phenomenon
remains valid for partial data inverse boundary problems for a class
of semilinear elliptic PDE.



The Calderón problem, 1980

Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with smooth boundary.
Consider the boundary value problem,{

Lγu = ∇ · (γ∇u) = 0 in Ω,

u|∂Ω = f .

Here γ = γ(x) is the electrical conductivity, γ > 0 on Ω, f represents
the imposed voltage potential at the boundary.

γ

Ω
Λγ

The Dirichlet–to–Neumann map: Λγ(f ) = (γ∂νu)|∂Ω,
where ν is the unit outer normal to ∂Ω.
We apply the voltage potential on ∂Ω, measure the resulting current flux at ∂Ω,
and encode this information into the Dirichlet–to–Neumann map.
The Calderón problem: Does Λγ determine γ in Ω?



Applications:

I Medical imaging (electrical impedance tomography)

Figure: Source: https://matematiikkalehtisolmu.fi/2000/1/naatanen/

I Non-destructive testing (corrosion, cracks)
...

I Geophysical exploration (oil prospecting)



First global uniqueness result in dimension n ≥ 3:

Theorem (Sylvester–Uhlmann, 1987)
Let 0 < γj ∈ C 1,1(Ω), j = 1, 2. If Λγ1 = Λγ2 then γ1 = γ2 in Ω.



Idea of proof

Step 1. Reduction of the conductivity equation to the Schrödinger
equation,

γ
−1/2
j ◦ Lγj ◦ γ

−1/2
j = ∆− qj , qj =

∆γ
1/2
j

γ
1/2
j

∈ L∞(Ω), j = 1, 2.

Step 2. Λγ1 = Λγ2 =⇒ the integral identity:∫
Ω

(q1 − q2)u1u2dx = 0,

for all u1, u2 solutions to (∆− qj)uj = 0 in Ω.
Step 3. Show that

Span{u1u2 : (∆− qj)uj = 0 in Ω}

is dense in L1(Ω).



Construct enough special solutions to (∆−qj)uj = 0, called complex
geometric optics (CGO) solutions:

uj(x ; h) = e
x·ζj
h (1 + rj(x ; h)), j = 1, 2,

for all h > 0 small enough.

Here ζj ∈ Cn, ζj · ζj = 0, |ζj | ∼ 1 =⇒ −∆(e
x·ζj
h ) = 0, rj : remainder

which tends to zero in a suitable sense, as h→ 0.



The issue of regularity of conductivity

I Sylvester–Uhlmann, 1987: γ ∈ C 1,1(Ω);

I Brown, 1996: γ ∈ C 1, 12+δ(Ω), δ > 0;

I Päivärinta–Panchenko–Uhlmann, 2003: γ ∈W
3
2 ,∞(Ω);

I Brown–Torres, 2003: γ ∈W
3
2 ,p(Ω), p > 2n;

I Haberman-Tataru, 2013: γ ∈ C 1(Ω) and γ ∈W 1,∞(Ω) with
‖∇ log γ‖L∞ small;

I Caro-Rogers, 2016: γ ∈W 1,∞(Ω);

Conjecture: global uniqueness holds for γ ∈W 1,n(Ω).

I Haberman, 2016: proved the conjecture for n = 3, 4.
I Ham–Kwon–Lee, 2019, Ponce-Vanegas, 2019: further progress

towards the conjecture for n ≥ 5.



The Calderón problem with partial data

In practice impedance tomography measurements cannot be taken
on the entire boundary due to limitations in resources or obstructions
from natural obstacles.

This leads us to consider the Calderón problem with partial data.

Let Γ1, Γ2 ⊂ ∂Ω be arbitrary open non-empty. The partial Dirichlet–
to–Neumann map,

ΛΓ1,Γ2
γ (f ) = (γ∂νu)|Γ2 , supp (f ) ⊂ Γ1.

The Calderón problem with partial data: Does ΛΓ1,Γ2
γ determine γ in

Ω? Open in general.



Results for C 1,1 conductivities

Let γ1, γ2 ∈ C 1,1(Ω). If ΛΓ1,Γ2
γ1 = ΛΓ1,Γ2

γ2 then γ1 = γ2 in Ω.

I Ammari–Uhlmann, 2004: γ1 = γ2 near ∂Ω, Γ1 = Γ2 ⊂ ∂Ω
arbitrary

I Isakov, 2007: Γ1 = Γ2 = Γ and ∂Ω \ Γ is either a part of a
hyperplane or a sphere

A characteristic feature of these results: reduction of the partial data
problem to a full data one using unique continuation and symmetry
type arguments.



I Bukhgeim–Uhlmann, 2002:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω : ξ ·ν(x) < ε}, ξ ∈ Sn−1, ε > 0.

Note: Γ2 is slightly more than a half of the boundary
I Kenig–Sjöstrand–Uhlmann, 2007:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω :
(x − x0)

|x − x0|
· ν(x) < ε},

x0 /∈ ch(Ω), ε > 0. 

Note: when Ω is strictly convex, Γ2 could be arbitrarily small

I Kenig–Salo, 2014: unifies approaches of
Kenig–Sjöstrand–Uhlmann and Isakov and extends both of
them.



The issue of regularity of conductivity in the
partial data problem

I In the Bukhgeim–Uhlmann result:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω : ξ ·ν(x) < ε}, ξ ∈ Sn−1, ε > 0.

I Knudsen, 2006: γ ∈W
3
2 +δ,2n(Ω), δ > 0

I Zhang, 2012: γ ∈ C 1,δ(Ω) ∩ H
3
2 (Ω), δ > 0



I In the Kenig–Sjöstrand–Uhlmann result:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω :
(x − x0)

|x − x0|
· ν(x) < ε},

x0 /∈ ch(Ω), ε > 0.

Note: when Ω is strictly convex, Γ2 could be arbitrarily small

Theorem (K.–Uhlmann, 2016)
Let γ1, γ2 ∈ C 1,δ(Ω) ∩ H

3
2 (Ω), δ > 0 arbitrarily small. Assume

that γ1, γ2 > 0 in Ω, γ1 = γ2 and ∂νγ1 = ∂νγ2 on ∂Ω \ Γ2. If
ΛΓ1,Γ2
γ1 = ΛΓ1,Γ2

γ2 then γ1 = γ2 in Ω.

Remark. K.–Uhlmann, 2016: the result holds also for γ1, γ2 ∈
W 1,∞(Ω) ∩ H

3
2+δ(Ω), δ > 0.



Outline of the proof

Step 1. Complex geometric optics solutions for Lipschitz continuous
conductivities
Let 0 < γ ∈W 1,∞(Ω) and extend it to a function on Rn so that the
extension 0 < γ ∈W 1,∞(Rn) and γ = 1 near infinity.
We reduce the conductivity equation to the Schrödinger equation:

γ−1/2 ◦ Lγ ◦ γ−1/2 = ∆− q,

q =
∆γ1/2

γ1/2 = −∇γ1/2 · ∇γ−1/2 +
1
2

∆ log γ ∈ (H−1 ∩ E ′)(Rn).

Define the "multiplication by q" map

mq : H1(Rn)→ H−1(Rn)

by

〈mq(u), v〉Rn = −
∫
Rn

(∇γ1/2·∇γ−1/2)uvdx−1
2

∫
Rn

∇ log γ·∇(uv)dx ,

for u, v ∈ H1(Rn). Here 〈·, ·〉Rn is the distribution duality on Rn.



Construct complex geometric optics solutions for the Schrödinger
equation with a singular potential,

−∆u + mq(u) = 0 in Ω.

Following Kenig–Sjöstrand–Uhlmann, 2007, we rely on Carleman es-
timates for the semiclassical Laplace operator −h2∆, 0 < h→ 0.



Carleman estimates with limiting Carleman
weights

Let ϕ ∈ C∞(Ω,R). Consider the conjugated operator

Pϕ = e
ϕ
h (−h2∆)e−

ϕ
h ,

with the semiclassical principal symbol

pϕ(x , ξ) = ξ2 + 2i∇ϕ · ξ − |∇ϕ|2, x ∈ Ω, ξ ∈ Rn.

Definition (Kenig–Sjöstrand–Uhlmann, 2007)
ϕ ∈ C∞(Ω,R) is a limiting Carleman weight for −h2∆ if ∇ϕ 6= 0
and the Poisson bracket of Re pϕ and Im pϕ satisfies,

{Re pϕ, Im pϕ}(x , ξ) = 0 when pϕ(x , ξ) = 0, (x , ξ) ∈ Ω× Rn.

Note: if ϕ is a LCW then so is −ϕ.



Example:
I linear weights ϕ(x) = α · x , α ∈ Rn, |α| = 1,
I logarithmic weights ϕ(x) = log |x − x0|, with x0 6∈ Ω.

Dos Santos Ferreira–Kenig–Salo–Uhlmann, 2009: Complete local
classification of limiting Carleman weights on Rn.

Proposition (Salo–Tzou, 2009, Kenig–Sjöstrand–Uhlmann,
2007)
Let ϕ be a limiting Carleman weight for −h2∆, and let ϕ̃ = ϕ+ h

2εϕ
2.

Then for 0 < h� ε� 1 and s ∈ R, we have the following Carleman
estimate with a gain of 2 derivatives,

h√
ε
‖u‖Hs+2

scl (Rn) ≤ C‖eϕ̃/h(−h2∆)e−ϕ̃/hu‖Hs
scl(Rn), C > 0,

for all u ∈ C∞0 (Ω).
Here

‖u‖Hs
scl(Rn) = ‖〈hD〉su‖L2(Rn), 〈ξ〉 = (1 + |ξ|2)1/2.



Recalling that
mq : H1(Rn)→ H−1(Rn),

we should use the Carleman estimate with s = −1 and ε > 0 suffi-
ciently small but fixed.

Proposition
For all h > 0 sufficiently small, we have

h‖u‖H1
scl(Rn) ≤ C‖eϕ/h(−h2∆ + h2mq)e−ϕ/hu‖H−1scl (Rn),

for all u ∈ C∞0 (Ω).
The formal L2(Ω) adjoint of the operator

eϕ/h(−h2∆ + h2mq)e−ϕ/h

is of the form
e−ϕ/h(−h2∆ + h2mq)eϕ/h

and therefore, the same Carleman estimate holds for the adjoint.



The Carleman estimate for the adjoint implies the following solvabil-
ity result.

Proposition
If h > 0 is small enough, then for any v ∈ H−1(Ω), there is a solution
u ∈ H1(Ω) of the equation

eϕ/h(−h2∆ + h2mq)e−ϕ/hu = v in Ω,

which satisfies
‖u‖H1

scl(Ω) ≤
C

h
‖v‖H−1scl (Ω).



Complex WKB method

Fix a point x0 6∈ ch(Ω) and let ϕ(x) = log |x − x0|.
We wish to construct complex geometric optics solutions to −∆u +
mq(u) = 0, which are of the form

u(x ; h) = e
ϕ+iψ

h (a(x) + r(x ; h)).

Here ψ ∈ C∞(Ω,R) should solve the eikonal equation:

|∇ψ|2 = |∇ϕ|2, ∇ϕ · ∇ψ = 0,

and the amplitude a ∈ C∞(Ω) should satisfy the transport equation:

2(∇ϕ+ i∇ψ) · ∇a + (∆ϕ+ i∆ψ)a = 0.

The eikonal and transport equations have global smooth solutions.



The remainder r should satisfy

e−
(ϕ+iψ)

h (−h2∆ + h2mq)(e
ϕ+iψ

h r) = h2∆a− h2mq(a).

The solvability result together with standard L2 smoothing estimates
for ∇ log γ ∈ (L∞ ∩ E ′)(Rn) =⇒ ∃r ∈ H1(Ω) such that

‖r‖H1
scl(Ω) = o(1), h→ 0.

Such remainder estimates are not strong enough to solve the inverse
problem, even in the full data case.



Improvement for γ ∈ W 1,∞(Ω) ∩ H
3
2 (Ω)

In this case,
‖r‖H1

scl(Ω) = o(h1/2), h→ 0.

Where does this improvement come from?

I γ ∈W 1,∞ =⇒ A = ∇ log γ ∈ L∞ ∩ E ′ and therefore,

‖A− A ∗Ψτ‖L2 = o(1), τ → 0.

Here Ψτ is the standard mollifier.
I γ ∈W 1,∞ ∩ H

3
2 =⇒ A = ∇ log γ ∈ H

1
2 and therefore,

‖A− A ∗Ψτ‖L2 = o(τ1/2), τ → 0.



Step 2. Converting ΛΓ1,Γ2
γ1 = ΛΓ1,Γ2

γ2 into an integral identity

Let uj ∈ H1(Ω) satisfy Lγjuj = 0 in Ω, j = 1, 2, and let ũ1 ∈ H1(Ω)
be an auxiliary solution such that Lγ1 ũ1 = 0 with ũ1 = u2 on ∂Ω.
Then∫

Ω

(
−∇γ1/2

1 · ∇(γ
1/2
2 u1u2) +∇γ1/2

2 · ∇(γ
1/2
1 u1u2)

)
dx

=

∫
∂Ω\Γ2

(Λγ1 ũ1 − Λγ2u2)u1 dS .

Long tradition in inverse boundary problems ... Brown, 1996



Step 3. Testing the integral identity against complex geometric op-
tics solutions

We can extend γj to all of Rn so that γj −1 ∈ C 1,δ(Rn)∩H3/2(Rn),
with γ1 = γ2 on Rn \ Ω (thanks to the boundary determination).

Let us substitute the complex geometric optics solutions

u1(x ; h) = γ
−1/2
1 e−

(ϕ+iψ)
h (a1(x) + r1(x ; h)) ,

u2(x ; h) = γ
−1/2
2 e

ϕ+iψ
h (a2(x) + r2(x ; h)) ,

into the integral identity and pass to the limit h→ 0.

Main Lemma: We have

RHS =

∫
∂Ω\Γ2

(Λγ1 ũ1 − Λγ2u2)u1 dS → 0, h→ 0.

To show this, we use boundary Carleman estimates.



Boundary Carleman estimates with limiting
Carleman weights

Long tradition in PDE: Lebeau–Robbiano, 1994, Burq, 2002, Fursikov–
Imanuvilov, 1996, Koch–Tataru, 2001, ..., Dos Santos Ferreira–Kenig–
Sjöstrand–Uhlmann, 2007.

We want to apply boundary Carleman estimates to the function

ũ1 − u2

and the conductivity operator

−∆− A1 · ∇,

where A1 = ∇ log γ1 ∈ L∞∩H
1
2 (mq is too singular, so cannot work

with −∆ + mq).



Boundary Carleman estimates

For all u ∈ H2(Ω), u|∂Ω = 0, and all h > 0 small enough,

O(h3)

∫
∂Ω−

(−∂νϕ)e−
2ϕ
h |∂νu|2dS

+O(1)‖e−ϕ/h(−h2∆− hA1 · h∇)u‖2L2(Ω)

≥ h2(‖e−
ϕ
h u‖2L2(Ω) + ‖e−

ϕ
h h∇u‖2L2(Ω))

+ h3
∫
∂Ω+

(∂νϕ)e−
2ϕ
h |∂νu|2dS

Here
∂Ω± = {x ∈ ∂Ω : ±∂νϕ(x) ≥ 0},

Recall that
Γ2 = {x ∈ ∂Ω : ∂νϕ(x) < ε}.

Thus, we can control the integral over the inaccessible boundary
portion ∂Ω \ Γ2 ⊂ ∂Ω+.



Recall the integral identity:

∫
Ω

(
−∇γ1/2

1 · ∇(γ
1/2
2 u1u2) +∇γ1/2

2 · ∇(γ
1/2
1 u1u2)

)
dx

=

∫
∂Ω\Γ2

(Λγ1 ũ1 − Λγ2u2)u1 dS .

Hence,

RHS =

∫
∂Ω\Γ2

(Λγ1 ũ1 − Λγ2u2)u1 dS → 0, h→ 0.

As h→ 0, the LHS of the integral identity →∫
Ω

(
−∇γ1/2

1 · ∇(γ
−1/2
1 a1a2) +∇γ1/2

2 · ∇(γ
−1/2
2 a1a2)

)
dx .

Here the improved remainder estimates, available for γj ∈ W 1,∞ ∩
H3/2,

‖rj‖H1
scl(Ω) = o(h1/2)

are vital.



Step 4. Recovering the conductivity

We have∫
Ω

(
−∇γ1/2

1 · ∇(γ
−1/2
1 a1a2) +∇γ1/2

2 · ∇(γ
−1/2
2 a1a2)

)
dx = 0,

for all aj ∈ C∞(neigh(Ω),Rn) solving the transport equation

(∇ϕ+ i∇ψ) · ∇aj +
1
2

(∆ϕ+ i∆ψ) aj = 0.

Using analytic microlocal arguments, based on the microlocal Helga-
son and microlocal Holmgren theorems, we conclude that γ1 = γ2.



Remark. Can we go below 3/2 derivatives in the partial data Calderón
problem?

I Haberman–Tataru, 2013, Caro–Rogers, 2016: to go below 3/2
derivatives in the full data case, exploit averaging arguments
depending crucially on the linear nature of the limiting
Carleman weights.

I Kenig–Sjöstrand–Uhlmann, 2007: a key point in the partial
data problem is to use non-linear weights

To reach lower regularity in the partial data problem, it seems there-
fore that a new approach would be needed.



Partial data inverse boundary problems for
semilinear elliptic PDE

Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary.

Consider the Dirichlet problem for the following semilinear elliptic
equation, {

−∆u + q(x)um = 0 in Ω,

u = f on ∂Ω,
(1)

where m ≥ 2, q ∈ Cα(Ω), 0 < α < 1 (the Hölder space).

There exist δ > 0 and C > 0 such that when f ∈ Bδ(∂Ω) := {f ∈
C 2,α(∂Ω) : ‖f ‖C2,α(∂Ω) < δ}, the problem (1) has a unique solution
u = uf ∈ C 2,α(Ω) satisfying ‖u‖C2,α(Ω) ≤ Cδ.



Let Γ1, Γ2 ⊂ ∂Ω be arbitrary open non-empty. Define the partial
Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

Theorem (K.–Uhlmann; Lassas–Liimatainen–Lin–Salo, 2019)
ΛΓ1,Γ2
q1 = ΛΓ1,Γ2

q2 =⇒ q1 = q2 in Ω.



Remark. In the linear setting, i.e. m = 1,

−∆u + q(x)u = 0 in Ω,

the following is known:

I n ≥ 3: the problem is open in general,

I n = 2: open when Γ1 ∩ Γ2 = ∅. The problem is solved
I when Γ1 = Γ2 is an arbitrary open non-empty portion of ∂Ω

and q ∈ C 1,α(Ω) (Imanuvilov–Uhlmann–Yamamoto, 2010,
Guillarmou–Tzou, 2011 (in the case of Riemann surfaces)),

I when Γ1 ∩ Γ2 = ∅, provided that some additional geometric
assumptions are satisfied, and q ∈ C 2,α(Ω)
(Imanuvilov–Uhlmann–Yamamoto, 2011).



Remark. We can also consider more general semilinear elliptic equa-
tions,

−∆u + V (x , u) = 0 in Ω,

where the function V : Ω×C→ C satisfies the following conditions:

(i) the map C 3 z 7→ V (·, z) is holomorphic with values in
Cα(Ω), for some 0 < α < 1,

(ii) V (x , 0) = ∂zV (x , 0) = 0, for all x ∈ Ω.

Theorem (K.–Uhlmann; Lassas–Liimatainen–Lin–Salo, 2019)
ΛΓ1,Γ2
V1

= ΛΓ1,Γ2
V2

=⇒ V1 = V2 in Ω× C.



Consider next the following Dirichlet problem,{
−∆u + q(x)(∇u)2 = 0 in Ω,

u = f on ∂Ω.
(2)

Here q ∈ Cα(Ω) for some 0 < α < 1, (∇u)2 = ∇u · ∇u.

For any f ∈ C 2,α(∂Ω) small, there exists a unique small solution
u ∈ C 2,α(Ω). Define the partial Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

Theorem (K.–Uhlmann, 2019)
ΛΓ1,Γ2
q1 = ΛΓ1,Γ2

q2 =⇒ q1 = q2 in Ω.



Remark. Slightly more general nonlinearities can also be treated.

Remark. To best of our knowledge, this result is new even in the full
data case Γ1 = Γ2 = ∂Ω.

Let us mention that inverse boundary problems for nonlinear ellip-
tic PDE have been studied quite extensively, both in the semilinear
setting, as well as the quasilinear one:

Isakov–Nachman, 1995, Isakov–Sylvester, 1994, Sun, 1996, Sun–
Uhlmann, 1997, Sun, 2010, Muñoz–Uhlmann, 2018, ...

A classical method for attacking inverse boundary problems for non-
linear elliptic PDE, going back to Isakov, 1993, (in the case of semi-
linear parabolic PDE), consists of performing a first order lineariza-
tion of the given nonlinear Dirichlet-to-Neumann map, allowing one
to reduce the inverse problem to an inverse boundary problem for
a linear elliptic equation, and to employ the available results in this
case.



The recent works by Feizmohammadi–Oksanen; Lassas–Liimatainen–
Lin–Salo, 2019 have introduced the natural and powerful method
of higher order linearizations of the nonlinear Dirichlet-to-Neumann
map for inverse boundary problems for elliptic PDE, in the full data
case, allowing one to solve such problems for nonlinear equations
in situations where the corresponding inverse problems in the linear
setting are open.

Previously, a second order linearization of the nonlinear Dirichlet–to–
Neumann map has also been successfully exploited in the works by
Assylbekov–Zhou, 2017, Kang–Nakamura, 2002, Sun, 1996, Sun–
Uhlmann, 1997, ...



Idea of the proof of partial data results for
semilinear PDE

Consider first, for j = 1, 2,{
−∆uj + qj(x)umj = 0 in Ω,

uj = f on ∂Ω,

Let m = 2 and let us perform a second order linearization of this
problem.

To that end, let ε = (ε1, ε2) ∈ C2, and let fj ∈ C∞(∂Ω), supp (fj) ⊂
Γ1, j = 1, 2. The problem{

−∆uj + q(x)u2
j = 0 in Ω,

uj = ε1f1 + ε2f2 on ∂Ω,

has a unique small solution uj = uj(·, ε) ∈ C 2,α(Ω), which depends
holomorphically on ε ∈ neigh(0,C2) with values in C 2,α(Ω).

Differentiating with respect to εl , l = 1, 2, taking ε = 0, and using
that uj(x , 0) = 0, we get



{
∆v

(l)
j = 0 in Ω,

v
(l)
j = fl on ∂Ω,

where v
(l)
j = ∂εluj |ε=0, l = 1, 2. By the uniqueness and the elliptic

regularity for the Dirichlet problem, we see that v (l) := v
(l)
1 = v

(l)
2 ∈

C∞(Ω), l = 1, 2.

Applying ∂ε1∂ε2 |ε=0, we get next{
−∆wj + 2qj(x)v (1)v (2) = 0 in Ω,

wj = 0 on ∂Ω.

where wj = ∂ε1∂ε2uj |ε=0. The fact that

ΛΓ1,Γ2
q1 (ε1f1 + ε2f2) = ΛΓ1,Γ2

q2 (ε1f1 + ε2f2)

for all small ε1, ε2 and all f1, f2 ∈ C∞(∂Ω) with supp (f1), supp (f2) ⊂
Γ1 implies that ∂νw1|Γ2 = ∂νw2|Γ2 .



Multiplying the last equation by v (3) ∈ C∞(Ω) harmonic in Ω and
applying Green’s formula, we get

2
∫

Ω
(q1 − q2)v (1)v (2)v (3)dx =

∫
∂Ω\Γ2

(∂νw1 − ∂νw2)v (3)dS = 0,

provided that supp (v (3)|∂Ω) ⊂ Γ2. Hence, we obtain that∫
Ω

(q1 − q2)v (1)v (2)v (3)dx = 0,

for any v (l) ∈ C∞(Ω) harmonic in Ω, l = 1, 2, 3, such that
supp (v (l)|∂Ω) ⊂ Γ1, l = 1, 2, and supp (v (3)|∂Ω) ⊂ Γ2.
Take v (3) 6≡ 0.

Theorem (Dos Santos Ferreira–Kenig–Sjöstrand–Uhlmann,
2009)
Span{v (1)v (2) : v (l) ∈ C∞(Ω) harmonic, v (l)|∂Ω\Γ1 = 0, l = 1, 2} is
dense in L1(Ω).
Using this result, we conclude that q1 = q2.



Let us now consider{
−∆uj + qj(x)(∇uj)2 = 0 in Ω,

uj = ε1f1 + ε2f2 on ∂Ω.

Similarly, performing a second order linearization, we get∫
Ω

(q1 − q2)(∇v (1) · ∇v (2))v (3)dx = 0,

for any v (l) ∈ C∞(Ω) harmonic in Ω, l = 1, 2, 3, such that
supp (v (l)|∂Ω) ⊂ Γ1, l = 1, 2, and supp (v (3)|∂Ω) ⊂ Γ2. Our inverse
theorem follows therefore from the following density result.

Theorem (K.–Uhlmann, 2019)
Let Ω ⊂ Rn, n ≥ 2, be a connected bounded open set with C∞

boundary, let Γ ⊂ ∂Ω be an open nonempty subset of ∂Ω, and let
Γ̃ = ∂Ω \ Γ. Then

Span{∇u · ∇v : u, v ∈ C∞(Ω) harmonic, u|Γ̃ = v |Γ̃ = 0}

is dense in L1(Ω).



Idea of the proof

We follow the strategy of Dos Santos Ferreira–Kenig–Sjöstrand–
Uhlmann, 2009.

The global statement will be obtained as a corollary of the following
local result.

Proposition (Local result)
Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, let
x0 ∈ ∂Ω, and let Γ̃ ⊂ ∂Ω be the complement of an open boundary
neighborhood of x0. Then there exists δ > 0 such that if we have∫

Ω
f∇u · ∇vdx = 0,

for any harmonic functions u, v ∈ C∞(Ω) satisfying u|Γ̃ = v |Γ̃ = 0,
then f = 0 in B(x0, δ) ∩ Ω.



From local to global

We use a continuity argument. We know that f vanishes near x0 ∈
∂Ω. Let x1 ∈ Ω. Want: x1 6∈ supp (f ).

Let θ : [0, 1] → Ω be a C 1 curve joining x0 and x1, such that θ′(0)
is the interior normal to ∂Ω at x0, and θ(t) ∈ Ω for all t ∈ (0, 1].
We introduce the small neighborhood,

Θε(t) = {x ∈ Ω : d(x , θ([0, t])) ≤ ε}, 0 < ε� 1,

of the curve, ending at θ(t), and the set

I = {t ∈ [0, 1] : f vanishes a.e. on Θε(t) ∩ Ω}.

Now I 6= ∅ as 0 ∈ I if ε > 0 is small enough, by our local result.
One can easily see that I is a closed subset of [0, 1]. To show that
I is open, we argue making crucial use of the following Runge type
approximation result.



To state it, let Ω1 ⊂ Ω2 ⊂ Rn be two bounded open sets with
smooth boundaries such that Ω2 \ Ω1 6= ∅.

Associated to Ω2, we let G : C∞(Ω2) → C∞(Ω2), a 7→ w , be the
Green solution operator to the Dirichlet problem,{

−∆w = a in Ω2,

w |∂Ω2 = 0.

Lemma (Runge type approximation result)
The space

{Ga|Ω1 : a ∈ C∞(Ω2), supp (a) ⊂ Ω2 \ Ω1}

is dense in the space

{u ∈ C∞(Ω1) : −∆u = 0 in Ω1, u|∂Ω1∩∂Ω2 = 0},

with respect to the H1(Ω1)–topology.



Note that this result is a little bit more delicate than the correspond-
ing L2–approximation result, since the dual space of H1(Ω1),

H̃−1(Ω1) := {v ∈ H−1(Rn) : supp (v) ⊂ Ω1},

is not a subspace of D′(Ω1) and special care is needed to handle the
case when supp (v) ∩ ∂Ω1 6= ∅.



Local result
Proposition (Local result)
Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, let
x0 ∈ ∂Ω, and let Γ̃ ⊂ ∂Ω be the complement of an open boundary
neighborhood of x0. Then there exists δ > 0 such that if we have∫

Ω
f∇u · ∇vdx = 0,

for any harmonic functions u, v ∈ C∞(Ω) satisfying u|Γ̃ = v |Γ̃ = 0,
then f = 0 in B(x0, δ) ∩ Ω.
We follow Dos Santos Ferreira–Kenig–Sjöstrand–Uhlmann, 2009. First
using a conformal transformation, we reduce to the following setting:
x0 = 0, the tangent plane to Ω at x0 is given by x1 = 0, where
x = (x1, x

′),

Ω ⊂ {x ∈ Rn : |x + e1| < 1}, Γ̃ = {x ∈ ∂Ω : x1 ≤ −2c}

for some c > 0. Here e1 = (1, 0, . . . , 0) is the first basis vector.



We would like to construct enough harmonic functions vanishing on
Γ̃, to conclude from the cancellation property that f = 0 near x0.

We work with the corrected harmonic exponentials,

u(x , ζ) = e−
i
h
x ·ζ + w(x , ζ),

where ζ ∈ Cn, ζ · ζ = 0, w is the solution to the Dirichlet problem,{
−∆w = 0 in Ω,

w |∂Ω = −(e−
i
h
x ·ζχ)|∂Ω,

χ ∈ C∞0 (Rn) a cutoff function such that χ = 1 on Γ̃.

Thus, u ∈ C∞(Ω), u is harmonic in Ω, and u|Γ̃ = 0.



Cancellation property for ζ, η ∈ Cn, ζ · ζ = η · η = 0,∫
Ω
f (x)hDu(x , ζ) · hDu(x , η)dx = 0.

Let γ = ie1 + e2. There exists ε > 0 small such that any z ∈ Cn

such that |z − 2ie1| < 2ε can be decomposed as follows,

z = ζ + η,

where |ζ − γ| < C1ε, |η + γ| < C1ε, ζ · ζ = η · η = 0.
Note that here |ζ · η| is bounded from below. The cancellation
property leads to the following bound for the h–Fourier transform of
f , ∣∣∣∣ ∫

Ω
f (x)e−

ix·z
h dx

∣∣∣∣ ≤ Ce−
c
2h e

2C1ε
h ,

for all z ∈ Cn such that |z − 2ie1| < 2ε.

Recall that we want to show that f (x) = 0 near x = 0. To that end,
we pass from the Fourier transform of f to the FBI transform of f ,

Tf (z) =

∫
Rn

e−
(z−y)2

2h f (y)dy , z = (z1, . . . , zn) ∈ Cn.



Using the formula

Tf (z) = (2πh)−
n
2

∫
Rn

∫
Rn

e−
1
2h (z2+t2)e−

1
h
y ·(t+iz)f (y)dtdy ,

we get the bound,

e−
Φ(z1)
2h |Tf (z1, x

′)| ≤ Ch−1

{
1, z1 ∈ C,
e−

ca
4h , |z1 − 2a| ≤ εa

2 , |x
′| < εa

2 ,
x ′ ∈ Rn−1,

where a > 0 is large but fixed and the weight Φ is given by

Φ(z1) =

{
(Im z1)2, Re z1 ≤ 0,
(Im z1)2 − (Re z1)2, Re z1 ≥ 0.

Finally, one has to propagate the exponential decay of Tf (z1, x
′)

from a neighborhood of 2a in z1 to a neighborhood of 0. This is
done by Dos Santos Ferreira–Kenig–Sjöstrand–Uhlmann, 2009, using
complex analysis methods. Such ideas of propagating exponential
decay estimates for FBI transforms by the use of maximum principle
has a long tradition in Analytic Microlocal Analysis in connection
with Kashiwara’s watermelon theorem.



We obtain that

Tf (x) = O(e−
c′
h ), c ′ > 0,

as h→ 0. Here x ∈ Ω near 0. As

Tf (x) =

∫
Rn

e−
(x−y)2

2h f (y)dy ,

we see that (2πh)−n/2Tf (x)→ f (x), as h → 0, a.e. Hence, we get
f = 0 in a neighborhood of 0. This completes the proof of the local
result.



Inverse boundary problems for semilinear elliptic
equations with quadratic gradient terms, in the
presence of an unknown obstacle

Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with a connected C∞

boundary, and let D ⊂⊂ Ω be such that Ω \ D is connected and
∂D ∈ C∞. Let us consider the following boundary problem,

−∆u + q(x)(∇u)2 = 0 in Ω \ D,
u = 0 on ∂D,

u = f on ∂Ω,

where q ∈ Cα(Ω\D). For any f ∈ C 2,α(∂Ω) small, there is a unique
small solution u ∈ C 2,α(Ω \ D). Let Γ1, Γ2 ⊂ ∂Ω be non-empty
open subsets of the boundary ∂Ω. Define the partial Dirichlet–to–
Neumann map by

ΛD,Γ1,Γ2
q (f ) = ∂νu|Γ2 , f ∈ C 2,α(∂Ω) small, supp (f ) ⊂ Γ1.

Inverse problem: Does ΛD,Γ1,Γ2
q determine the unknown obstacle D

and the potential q?



Theorem (K.–Uhlmann, 2019)
Let D1,D2 ⊂⊂ Ω be non-empty open subsets with C∞ boundaries
such that Ω \ Dj are connected, j = 1, 2. Let qj ∈ Cα(Ω \ Dj),
j = 1, 2. Assume that ΛD1,Γ1,Γ2

q1 = ΛD2,Γ1,Γ2
q2 . Then D := D1 = D2,

q1 = q2 in Ω \ D.

Remark. This is a generalization of a result by Lassas–Liimatainen–
Lin–Salo, 2019 where semilinear elliptic equations without gradient
terms are considered.

Remark. The problem of determining an unknown obstacle is of
central significance in inverse scattering. The first uniqueness result
for this problem goes back to Schiffer and Lax and Phillips, 1967.
There have been numerous further contributions to this problem:
Isakov, 1990, Kirsch–Kress, 1993, ...
However, the simultaneous recovery of an obstacle and surround-
ing potentials in the linear setting, say in the case of the linear
Schrödinger equation, constitutes an open problem.



A word about the proof

It is an immediate consequence of our partial data result, once the
obstacle has been recovered. To determine the obstacle, performing
the first order linearization of the problem and the partial Dirichlet–
to–Neumann map, we get

−∆vj = 0 in Ω \ Dj ,

vj = 0 on ∂Dj ,

vj = f on ∂Ω,

where f ∈ C∞(∂Ω), supp (f ) ⊂ Γ1, and ∂νv1|Γ2 = ∂νv2|Γ2 .

A standard contradiction argument implies that D1 = D2.
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