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Motivation

[Folland & Stein 1974], [Rotschild & Stein 1976], [Folland, 1977]: Analysis
of sublaplacians can be performed using Lie groups theory, lifting procedure.

Example: Heisenberg group and the operator L on R3:

L = X 2 + Y 2, X = ∂x −
y

2
∂z , Y = ∂y +

x

2
∂z , [X ,Y ] = ∂z

What would be a semiclassical/microlocal approach on graded Lie groups
using theory of representations ?
Which class of pseudodifferential operators ?

[Taylor 1984], [Beals & Greiner 1988], [Christ, Geller, Glowasky & Polin
1992] [Geller 1990]
[Bahouri, FK & Gallagher 2012], [Fischer & Ruzhansky 2016], [FK &
Fischer, 2018 & 2019]
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The question: Large time evolution of energy density of
families of solutions of a Schrödinger equation

Let Vj be 2d vector fields of R2d+p and

−∆G =
∑

1≤j≤2d

V 2
j .

Assume g = v⊕ z is a Lie algebra of Heisenberg type with centre z,

v = Vect(Vi , 1 ≤ j ≤ 2d}, z = Vect([Vi ,Vj ], 1 ≤ i , j ≤ 2d),

2d = dimv, p = dimz.

Let (ψε0)ε>0 be bounded in L2(Rd) such that ∃s,Cs > 0, ∀ε > 0,

εs‖(−∆G )
s
2ψε0‖L2(G) + ε−s‖(−∆G )−

s
2ψε0‖L2(G) ≤ Cs .

Describe for φ ∈ C∞c (G ), T ∈ R, τ > 0

lim
ε→0

1

T

∫ T

0

∫
G

φ(x)|ei t
2ετ ε

2∆Gψε0(x)|2dx dt.

3 / 33



The same question in the Euclidean case

Let (ψε0) be a bounded family in L2(Rd) satisfying

∃s,Cs > 0, ∀ε > 0, εs‖(−∆)
s
2ψε0‖L2(Rd ) + ε−s‖(−∆)−

s
2ψε0‖L2(Rd ) ≤ Cc .

Then any limit point of the measure∣∣∣e−i t
2ετ ε

2∆ψε0

∣∣∣2 dxdt
is of the form %t(x)dt where %t ∈M+(Rd) and

1 If τ ∈ (0, 1), then %t = %0.

2 If τ = 1 then %t(x) =
∫
Rd µ0(x − tξ, dξ).

3 If τ > 1 then %t = 0.
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The result

Theorem (FK & Fischer 2019)

Any weak limit of |ei t
2ετ ε

2∆Gψε0(x)|2dx dt writes %tdt =
(
%v
∗

t + %z
∗

t

)
dt with

If τ ∈ (0, 1), for all t ∈ R, %t = %0

If τ = 1, then %z
∗

t = %z
∗

0 and %v
∗

t (x) =

∫
v∗
ς0 (Exp(t ω · V )x , dω) .

If τ ∈ (1, 2), then %v
∗

t = 0 and ∂t%
z∗

t = 0 holds in D′(R× G ).

If τ = 2, then %v
∗

t = 0 and %z
∗

t =
∑
n∈N

∫
z∗\{0}

γn,t(x , dλ) where

(
∂t −

2n + d

2|λ|
Z(λ)

)
γn,t = 0,

where Z(λ) is the left invariant vector field corresponding to λ ∈ z∗.

If τ > 2, then %t = 0 for all t ∈ R.
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The result

Remarks

Quantum limits split into two parts, with different threshold indexes.

Dispersion takes longer than in the Euclidean case [Bahouri, Gérard & Xu
2000], [Del Hierro 2005], [Bahouri, FK, Gallagher 2016]

Splitting and invariance properties already noticed (p = 1 - contact
manifolds, Grauert tubes) in [Zelditch 1997], [Colin de Verdière, Hillairet &
Trélat 2018], [Burq & Sun 2019]
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Schedule of the talk

1 Graded, stratified Lie groups, H-type groups

2 Analysis on graded Lie groups and Fourier transform

3 Pseudodifferential operators, Egorov theorem

4 Semi-classical measures and Schrödinger equation.
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Graded Lie groups
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Graded Lie groups - Definition

Definition

A simply connected Lie group G is graded if the Lie algebra g of its left-invariant
vector fields is graded :

g = g1 ⊕ · · · ⊕ gn, [g`, g`′ ] ⊂ g`+`′ .

The group G is stratified if

∀` ∈ {1, · · · n − 1}, [g`, g1] = g`+1.

G identifies to g via the exponential map:

exp : g → G
X 7→ exp(X )eG

The law group on G is a polynomial map (Campbell-Baker-Hausdorff).
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Graded Lie groups - Heisenberg group

The Heisenberg group:

The Lie algebra h = v⊕ z is generated by

X = ∂x −
y

2
∂z , Y = ∂y +

x

2
∂z , Z = ∂z = [X ,Y ].

=⇒ The group H is stratified and has two steps.

The points of G are the elements

w = Exp(xX + yY + sS), (x , y , s) ∈ R3.

H = R3 with the product law

(x , y , s) · (x ′, y ′, s ′) = (x + x ′, y + y ′, s + s ′ +
1

2
(x · y ′ − x ′ · y)).

The center of H is the set of points of the form (0, 0, s).
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Graded Lie groups - H-type groups

H-type groups (multidimensional versions of H [Kaplan 80])

1 The Lie algebra of G is stratified with two steps g = v⊕ z.
2 If B(λ) is the skew symmetric form defined on v× v by

∀λ ∈ z∗, ∀U,V ∈ v, B(λ)(U,V ) = λ([U,V ]),

then B(λ)2 = −|λ|2Id.

Notation (1): Let (V1, . . . ,V2d) be an ONB of v and (Z1, · · · ,Zp) of z, then
x ∈ G or X ∈ g writes

x = Exp(X ), X = v1V1 + . . .+ v2dV2d + z1Z1 + . . .+ zpZp.
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Graded Lie groups - H-type groups

Notation (2): v decomposes in a λ-depending way as v = pλ ⊕ qλ with

p := pλ := Span
(
P1, . . . ,Pd

)
, q := qλ := Span

(
Q1, . . . ,Qd

)
.

where (P1, . . . ,Pd ,Q1, . . . ,Qd) be an ONB of v such that

B(λ)(U,V ) = |λ|U tJV , J =

(
0 Id
−Id 0

)
.

Then x ∈ G or X ∈ g write

x = Exp(X ), X = p1P1+. . .+pdPd + q1Q1+. . .+qdQd + z1Z1+. . .+zpZp.

Besides
[Pj ,Qj ] = Zλ, ∀j ∈ {1, · · · , d}

where Zλ corresponds to the vector λ in the identification z ∼ z∗.
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Analysis on H-type groups
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Analysis on H-type groups

The Haar measure, dx is deduced on G from the Lebesgue meas. on g.
Associated Lebesgue spaces on G :

‖f ‖Lp(G) :=

(∫
G

|f (x)|p dx
) 1

p

, p ∈ [1,∞[.

The dilatation. For r > 0 and X = V + Z ∈ g, one sets δrX = rV + r2Z .

g
δr→ g

exp ↓ ↓ exp
G →

exp ◦ δr ◦ exp−1
G

r · Exp(V + Z ) := Exp(r V + r2Z ), r > 0.

=⇒ Homogeneous functions and operators

Homogeneous dimension. The Haar measure is Q-homogeneous:

Q := dim v + 2 dim z = 2d + 2p.

14 / 33



The dual set of H-type groups

Let Ĝ be the set of irreducible representations of G :

Ĝ = {class of πλ : λ ∈ z∗ \ {0}} t {class of π0,ω : ω ∈ v∗}.

Infinite dimensional representations are parametrized by z∗ \ {0}:
for λ ∈ z∗ \ {0}, then Hλ = L2(pλ) with for x = Exp(P + Q + Z ) ∈ G ,

πλx Φ(ξ) = exp

[
iλ(Z ) +

i

2
|λ|P · Q + i

√
|λ| ξ · Q

]
Φ
(
ξ +

√
|λ|P

)
.

Finite dimensional representations are parametrized by v∗: for ω ∈ v∗,

π0,ω
x = eiω(V ), x = Exp(V + Z ) ∈ G .
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The dual set of H-type groups

Plancherel measure: dµ(πλ) = |λ|ddλ.

=⇒ The set of finite dimensional representations is of 0 Plancherel measure.

Dilations on Ĝ : r · πx = πr .x

for r ∈ R∗+, λ ∈ z∗ \ {0}, x ∈ G ,

πλr ·x = Trπ
r2λ
x T ∗r , Tr f (ξ) = r1/2f (rξ),

=⇒ r · λ = r2λ

for r ∈ R∗+, ω ∈ v∗, x ∈ G , π0,ω
r ·x = eirω·x

=⇒ r · (0, ω) = (0, rω)
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Fourier transform

Definition

Let f ∈ L1(G ), the Fourier transform of f is the operator of L(Hλ),

f̂ (λ) =

∫
G

f (x)πλ(x)∗dx .

Notation: f̂ (λ) = f̂ (πλ), f̂ (0, ω) = f̂ (π0,ω).

Extension to L2(G ) : if f ∈ L2(G ), f̂ (λ) ∈ HS(Hλ) and Plancherel formula∫
G

|f (x)|2dx = c0

∫
Ĝ

‖f̂ (λ)‖2
HS(Hλ)|λ|

ddλ.

Inversion formula : with ad-hoc assumptions

f (x) = c0

∫
Ĝ

tr(πλx f̂ (λ))|λ|ddλ.
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The sublalacian

The Sublaplacian: −∆G =
∑

1≤j≤2d V
2
j ,

∆̂G f (λ) = H(λ)f̂ (λ), λ ∈ Ĝ , f ∈ S(G )

with

H(λ) := |λ|
∑

1≤j≤d

(−∂2
ξj + ξ2

j ) if λ ∈ z∗ \ {0},

H((0, ω)) = |ω|2, if ω ∈ v∗.

Spectrum of H(λ): |λ|(2|α|+ d), α ∈ Nd

Eigenprojectors of H(λ):

Πn =
∑
|α|=n

|hα〉〈hα|,

with hα Hermite functions hα(ξ) = Π1≤j≤dhαj (ξj).
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Pseudodifferential operators and Egorov Theorem
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Pseudodifferential operators on H-type groups

Using Fourier inversion formula for defining an operator:

f (x) = c0

∫
Ĝ

tr
(
πλx f̂ (λ)

)
|λ|ddλ.

Op(σ)f (x) = c0

∫
Ĝ

tr
(
πλx σ(x , λ)f̂ (λ)

)
|λ|ddλ, σ(x , λ) ∈ L(Hλ).

Symbols : σ(x , λ) ∈ Sm(G ) iff σ is C∞c in x and “homogeneous of degree m
in λ” + some “differentiability” condition in πλ (difference operators).
Note that σ(x , (0, ω)) is a scalar and not an operator.

Semi-classical pseudodifferential operators: Let σ ∈ S−∞(G ), ε� 1

Opε(σ)f (x) = c0

∫
Ĝ

tr
(
πλx σ(x , ε · λ)f̂ (λ)

)
|λ|ddλ.

[Bahouri, FK & Gallagher, 12], [Fischer & Ruzhansky, 16], [FK & Fischer, 18].
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The kernel of a semi-classical pseudodifferential operator.

For f ∈ S(G ),

Opε(σ)f (x) = c0

∫
Ĝ

Tr
(
πλx σ(x , ε · λ)F f (λ)

)
|λ|d dλ

= c0 ε
−Q
∫
G×Ĝ

Tr
(
πλδε−1 (y−1x)σ(x , λ)

)
f (y)|λ|d dλ dy

=

∫
G

κεx(y−1x)f (y)dy .

The convolution kernel of Opε(σ) is obtained by scaling from κx(·),

κεx(z) = ε−Qκx (δε−1z)

with

κx(z) = c0

∫
Ĝ

Tr
(
πλz σ(x , λ)

)
|λ|ddλ i.e. F(κx)(λ) = σ(x , λ).
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Action on L2(G )

The set A0 is the set of operator-valued symbols σ(x , λ) ∈ L(Hλ) such that

σ(x , λ) = Fκx(λ) =

∫
G

κx(z)(πλz )∗dz ,

where x 7→ κx(y) is in C∞c (G ,S(G )).

Proposition

The set A0 is an algebra and ∃C > 0, ∀σ ∈ A0, ∀ε > 0,

‖Opε(σ)‖L(L2(G)) ≤ C

∫
G

sup
x∈G
|κx(z)|dz .

Proof: |Opε(σ)f (x)| =

∣∣∣∣∫
G

f (y)κεx(y−1x)dy

∣∣∣∣
≤
∫
G

|f (y)| sup
x1∈G
|κεx1

(y−1x)| dy = |f | ∗ sup
x1∈G
|κεx1

(·)|(x)

Then Young conv. inequ. and ‖ supx∈G |κεx(·)|‖L1(G) = ‖ supx∈G |κx(·)|‖L1(G).
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Egorov Theorem [FK, Fischer 19]

Let ψ ∈ L2(G ) and θ ∈ C∞c (R), σ ∈ A with σ = 0 close to λ = 0 and

Qε
σ(t) = e−i

t
2ετ ε

2∆G opε(σ) ei
t

2ετ ε
2∆G .

If [σ,H(λ)] 6= 0, then

∫
R
θ(t) (Qε

σ(t)ψ,ψ)L2(G) dt = O(εmin(τ,1)‖ψ‖2).

If [σ,H(λ)] = 0, σ = ΠnσΠn

1 if τ ∈ (0, 2),

∫
R
θ′(t) (Qε

σ(t)ψ,ψ) dt = O(εmin(1,τ−2)‖ψ‖2),

2 if τ = 2, for all s ∈ R (transport)∫
R
θ(t) (Qε

σ(t)ψ,ψ) dt =

∫
R
θ(t + s)

(
Qε

Φ−s
n (σ)

(t)ψ,ψ
)
dt + O(ε‖ψ‖2),

3 if τ > 2, for all s ∈ R (invariance)∫
R
θ(t) (Qε

σ(t)ψ,ψ) dt =

∫
R
θ(t)

(
Qε

Φ−s
n (σ)

ψ,ψ
)
dt+O(εmin(1,2−τ)‖ψ‖2).

Above, Φs
n(σ) = σ

(
Exp( 2n+d

2|λ| Z
(λ)s)x , λ

)
.
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Proof of the Egorov Theorem

One writes

ετ
d

dt
(opε(σ)ψε(t), ψε(t)) = (opε([σ,H(λ)])ψε(t), ψε(t))

+ε
(
opε(V .π

λ(V )σ)ψε(t), ψε(t)
)
− ε2 (opε(∆Gσ)(t)ψε(t), ψε(t)) .

2 facts:

1 There exists σ1 ∈ A such that

V .πλ(V )σ = [σ1,H(λ)].

2 For this σ1, one has

Πn

(
V .πλ(V )σ1 −

1

2
∆Gσ

)
Πn =

2n + d

2|λ|
ΠnZ(λ)σΠn.
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Proof of the Egorov Theorem

One writes for σ = ΠnσΠn

ετ
∫
θ(t)

d

dt
(opε(σ)ψε(t), ψε(t)) dt =

ε2

∫
θ(t)

(
opε

(
2n + d

2|λ|
ΠnZ(λ)σΠn

)
ψε(t), ψε(t)

)
dt.

2 facts:

1 There exists σ1 ∈ A such that

V .πλ(V )σ = [σ1,H(λ)].

2 For this σ1, one has

Πn

(
V .πλ(V )σ1 −

1

2
∆Gσ

)
Πn =

2n + d

2|λ|
ΠnZ(λ)σΠn.
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Semi-classical measures and Schrödinger equation
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Existence and structure of semi-classical measures

Let M+
1 (G × Ĝ ) be the set of pairs (Γ, γ) consisting of a positive Radon

measure γ on G × Ĝ and a family of positive trace 1 operators Γ(x , λ) on Hλ.

Proposition

Let (ψε(t)) be a bounded family in L∞(R, L2(Rd)). There exist εk −→
k→+∞

0 and

t 7→ Γtdγt ∈ L∞(R,M+
1 (G × Ĝ )) such that for all θ ∈ L1(R) and σ ∈ A0,∫

θ(t) (Opε(σ)ψε(t), ψε(t)) dt −→
εk→0

∫
R×G×Ĝ

θ(t)Tr (σ(x , λ)Γt(x , λ)) dγt(x , λ)dt.

Remark:

1. Γtdγt has two parts:

a non commutative part described by an operator valued measure on
G × z∗ \ {0} (Hλ = L2(pλ)).
an Euclidean part described by a (scalar) positive Radon measure on v∗

(Hλ = C).

27 / 33



Existence and structure of semi-classical measures

Proposition

Let (ψε(t)) be a bounded family in L∞(R, L2(Rd)). There exist εk −→
k→+∞

0 and

t 7→ Γtdγt ∈ L∞(R,M+
1 (G × Ĝ )) such that for all θ ∈ L1(R) and σ ∈ A,∫

θ(t) (Opε(σ)ψε(t), ψε(t)) dt −→
εk→0

∫
R×G×Ĝ

θ(t)Tr (σ(x , λ)Γt(x , λ)) dγt(x , λ)dt.

Remark:

2. Link with the weak limit of the energy density:
If ‖(−ε2∆G )

s
2ψε0‖L2(G) ≤ C , then ∀φ ∈ C∞c (G ), θ ∈ C(R),

lim sup
k→+∞

∫
θ(t)

∫
G

φ(x)|ψεk (t, x)|2dxdt =

∫
R×G×Ĝ

θ(t)φ(x)Tr (Γ(x , λ)) dγ(x , λ)dt.
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A few words about the proof...

Difficulty : No Garding’s inequality...
=⇒ Use a “C∗-algebra” approach.

The key: Consider the C∗-algebra A obtained by completion of A0 with

σ 7→ sup
(x,π)∈G×Ĝ

‖σ(x , π)‖L(Hπ).

The set of the states of A coincide with M+
1 (G × Ĝ ).

The arguments: The quantities

`ε(σ) = (Opε(σ)ψε, ψε)

satisfy:

1 For any σ ∈ A0, `ε(σ) is bounded and there exists (εk(σ))k∈N such
that `εk (σ)(θ, σ) has a limit `(σ).

2 Using the separability of A0 and a diagonal extraction, one finds
(εk)k∈N such that for all σ ∈ A0, (`εk (σ))k∈N has a limit `(σ).

3 The map σ 7→ `(σ) extends to A and is a state of A (`(σ∗σ) ≥ 0).
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Semi-classical measures and Schrödinger equation

Consider solutions of the Schrödinger equation

iετ∂tψ
ε = −ε2∆Gψ

ε, ψε(0) = ψε0 .

Let Γtdγt be the semi-classical measure of a family ψε(t).

The non-commutative part

Theorem (FK & Fischer 2019)

(i) For dγt-a. a. (x , λ) ∈ G × Ĝ and a.a. t ∈ R,

Γt(x , λ) =
∑
n∈N

Γn,t(x , λ) with Γn,t(x , λ) := ΠnΓt(x , λ)Πn,

where Πn are spectral projections of H(λ) for the eigenvalues |λ|(2n + d).

(ii) - if τ ∈ (0, 2), ∂t (Γn,t(x , λ)dγt) = 0,
- if τ = 2, Γn,t(x , λ)dγt(x , λ) satisfies (∂t − 2n+d

2|λ| Z
(λ)) (Γn,t(x , λ)dγt) = 0

- if τ > 2 , Z(λ) (Γn,t(x , λ)dγt) = 0 (invariance).

Z(λ) ∈ z is the vector corresponding to λ ∈ z∗.
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Semi-classical measures and Schrödinger equation

The non-commutative part

(...)

The Euclidean part

Theorem (FK & Fischer 2019)

(iii) Above λ = 0, set dςt(x , ω) = Γt(x , (0, ω))dγt(x , (0, ω))

- if τ ∈ (0, 1), ∂tςt(x , (0, ω)) = 0,
- if τ = 1, (∂t − ω · V )ςt(x , ω) = 0 (transport),
- if τ > 1, ω · V ςt = 0 (invariance).

Proof: Same strategy than the proof of Egorov Theorem + limit ε→ 0 +
identification of each part of the measure.
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Conclusion

We have extended the microlocal/semiclassical approach to the setting of
graded Lie groups.

In the non-semiclassical framework, one obtains (without pain...)
compensated compactness theorems ([Baldi, Franchi, 13], [Baldi, Franchi,
Tchou & Tesi 10], [FK & Fischer 18])

Application to the analysis of eigenfunctions of (complicated)
sub-Laplacians ?
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Thank you for your attention !
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