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@ [Folland & Stein 1974], [Rotschild & Stein 1976], [Folland, 1977]: Analysis
of sublaplacians can be performed using Lie groups theory, lifting procedure.

Example: Heisenberg group and the operator L on R3:

L=X24 Y2 xzax_gaz, yzay+gaz, [X,Y] =0,

@ What would be a semiclassical /microlocal approach on graded Lie groups
using theory of representations ?
Which class of pseudodifferential operators ?

[Taylor 1984], [Beals & Greiner 1988], [Christ, Geller, Glowasky & Polin
1992] [Geller 1990]

[Bahouri, FK & Gallagher 2012], [Fischer & Ruzhansky 2016], [FK &
Fischer, 2018 & 2019]



The question: Large time evolution of energy density of

families of solutions of a Schrodinger equation

@ Let V; be 2d vector fields of R??*P and

“Be= >V

1<j<2d

@ Assume g = v 3 is a Lie algebra of Heisenberg type with centre 3,
v = Vect(V;, 1 <j<2d}, 3= Vect([V;,Vj], 1 <1i,j<2d),
2d = dimv, p = dimj.
@ Let (¢5)-~0 be bounded in L2(R9) such that 3s, C; > 0, Ve > 0,
e°1(=86) 3¢5l i2(6) + e I(—26) 2l i2(e) < €
Describe for ¢ € C°(G), T€R, 7 >0

I|m—/ /¢> Yo/ 7 Be s (x) 2dx dt.

e—0 T



The same question in the Euclidean case

Let (¢)5) be a bounded family in L2(R?) satisfying
ds, G > 0, Ve >0, 55H(,A)§U‘)SHL2(R(1) +€7$H(7A)7%’@8”L2(Rd) < C..
Then any limit point of the measure

—izr%szATs,s
+0

2
dxdt

.
is of the form g.(x)dt where o, € M*(R9) and
Q If 7 €(0,1), then o, = oo.

@ If 7 =1 then 0:(x) = [y, po(x — t&, d&).
Q If 7 > 1 then o, = 0.



The result

Theorem (FK & Fischer 2019)

Any weak limit of |¢/7* Aoy 6(x)|?dx dt writes o;dt = (Q‘t’ 4 Q§> dt with
o IfTr€(0,1), forall t € R, o = 0o

o Ifr =1, then o} =} and ¢" (x) = / o (Exp(tw - V)x, dw).
v*

IfT € (1,2), then 0¥ =0 and 9,0} = 0 holds in D'(R x G).

o IfT =2, then o =0 and o} = 2/ Yn.e(x, d)\) where
nen Y3\ {0}
2n+d
_ z() T
(2= 5572 ) e =0

where Z(\) is the left invariant vector field corresponding to \ € 3*.

@ IfT>2, then o, =0 for all t € R.

v
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The result

Remarks

@ Quantum limits split into two parts, with different threshold indexes.

@ Dispersion takes longer than in the Euclidean case [Bahouri, Gérard & Xu
2000], [Del Hierro 2005], [Bahouri, FK, Gallagher 2016]

@ Splitting and invariance properties already noticed (p = 1 - contact
manifolds, Grauert tubes) in [Zelditch 1997], [Colin de Verdiére, Hillairet &

Trélat 2018], [Burg & Sun 2019]



Schedule of the talk

@ Graded, stratified Lie groups, H-type groups
@ Analysis on graded Lie groups and Fourier transform
© Pseudodifferential operators, Egorov theorem

@ Semi-classical measures and Schrédinger equation.



Graded Lie groups



Graded Lie groups - Definition

Definition

A simply connected Lie group G is graded if the Lie algebra g of its left-invariant
vector fields is graded :

9=019 - Pgn, [90,00] C geter-

The group G is stratified if

A4 S {la e n— 1}7 [gfagl] = go+1-

@ G identifies to g via the exponential map:

exp g — G
X = exp(X)eg

@ The law group on G is a polynomial map (Campbell-Baker-Hausdorff).
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Graded Lie groups - Heisenberg group

@ The Heisenberg group:
o The Lie algebra h = v @& ; is generated by

xzax—gaz, Y:ay+%az, Z=0,=[X.Y]

= The group H is stratified and has two steps.

e The points of G are the elements
w = BExp(xX + yY +S), (x,y,s) € R3.

o H = R3 with the product law

1
(x,y,s)-(x’,y/.,s’):(X+x/.,y+y',s+s'+E(X-y’—x’-y)).

o The center of H is the set of points of the form (0,0, s).
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Graded Lie groups - H-type groups

@ H-type groups (multidimensional versions of H [Kaplan 80])

@ The Lie algebra of G is stratified with two steps g = v & 3.
@ If B()) is the skew symmetric form defined on v x v by

VA €™, YU,V en, BA)(U, V)= AU, V]),
then B(\)? = —|)\|°Id.

@ Notation (1): Let (V4,..., Voq) be an ONB of v and (Z1,--- , Z,) of 3, then
x € G or X € g writes

x = Exp(X), X=wnVi+...+viVog + 24+ ...+ 2,Z,.
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Graded Lie groups - H-type groups

@ Notation (2): v decomposes in a A-depending way as v = p) @ g, with
p = py = Span (Pl, ceey Pd) , q:=qx:= Span (Q17 ey Qd).

where (Py,..., Py, Q1,...,Qy) be an ONB of v such that

B ‘ (0 Id
B(A(U, V)= |ANUIV, J= (—Id 0"
Then x € G or X € g write
x =Exp(X), X=piPi+...+psPa+ 1 Q1+.. . +qaQuq + 21.21+. . . +2,2Z,.

Besides

where Z* corresponds to the vector ) in the identification 3 ~ 3*.
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Analysis on H-type groups

13 / 33



Analysis on H-type groups

@ The Haar measure, dx is deduced on G from the Lebesgue meas. on g.
Associated Lebesgue spaces on G:

ey = ([ 170 de> pellod

@ The dilatation. For r > 0and X = V + Z € g, one sets 6, X = rV + r?Z.

dy,
g - g
exp \l, \l, exp
G — G

expod,oexp!
r-Exp(V + Z) :=Exp(r V + r?Z), r > 0.
—> Homogeneous functions and operators

@ Homogeneous dimension. The Haar measure is Q-homogeneous:

Q :=dimv 4+ 2dim 3 = 2d + 2p.
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The dual set of H-type groups

Let G be the set of irreducible representations of G:

G = {class of 7 : X €3"\ {0}} U {class of 7%¢ : w € v*}.

@ Infinite dimensional representations are parametrized by 3* \ {0}:
for A € 3%\ {0}, then H, = L?(p,) with for x = Exp(P + Q + Z) € G,

T2 d(€) = exp |iNZ) + élkl P Q+im£-0} ® (5+ mp) .

@ Finite dimensional representations are parametrized by v*: for w € v*,

70 — V) x —Exp(V +2) € G.

X
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The dual set of H-type groups

@ Plancherel measure: dy(7) = [A|9d\.

—> The set of finite dimensional representations is of 0 Plancherel measure.

@ Dilationson G: r-m, = 7,

o for re R%, A€ 3"\ {0}, x€ G,
= T T7, TL() = r2F(re),
= r-A=r2)\
o for re R* , wev* xeG, qoY — girwx

= r-(0,w) = (0, rw)
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Fourier transform

Definition

Let f € L}(G), the Fourier transform of f is the operator of £L(H.),

() = /G f(x) (x)* dx.

e Notation: F(\) = f(7*), F(0,w) = F(x%%).
@ Extension to L2(G) : if f € L?(G), f(/\) € HS(H,) and Plancherel formula

/G ()P = / 1FO) Basgres | AN

@ Inversion formula : with ad-hoc assumptions

f(x) = co/étr(ﬂi‘)?(/\))|/\|dd/\.
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The sublalacian

The Sublaplacian: —Ag = 3,04 Vj2,

~

AcF(A) = HA)F(N), A€ G, feS(6)

with

H) = AL Y (=0F +&) if Aes™\ {0},

1<j<d
H((0,w)) = |w|?, if weEv*.

@ Spectrum of H(A): |A|(2]a| + d), a € N?
@ Eigenprojectors of H(\):
M, = Z ‘hw><hu‘a
|a]=n
with h, Hermite functions h,(&) = Mi<j<qha;(§)).
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Pseudodifferential operators and Egorov Theorem
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Pseudodifferential operators on H-type groups

@ Using Fourier inversion formula for defining an operator:

f(x) = co/étr (wjf(x)) IA[dA.

Op(0)f(x) =<0 [

tr (wga(x, A)?(A)) IN9dA, o(x, \) € L(Hy).
G
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Pseudodifferential operators on H-type groups

@ Using Fourier inversion formula for defining an operator:

f(x) = co/étr (wjf(x)) IA[dA.

Op(0)f(x) =<0 [

tr (wga(x, A)?(A)) IN9dA, o(x, \) € L(Hy).
G

@ Symbols : o(x,\) € S”(G) iff o is CZ° in x and “homogeneous of degree m
in \" + some “differentiability” condition in 7 (difference operators).
Note that o(x, (0,w)) is a scalar and not an operator.
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Pseudodifferential operators on H-type groups

@ Using Fourier inversion formula for defining an operator:
f(x) = o / tr (wjf(x)) IA[dA.
G

Op(0)f(x) = co/étr (wﬁa(x, A)?(A)) IN9dA, o(x, \) € L(Hy).

@ Symbols : o(x,\) € S”(G) iff o is CZ° in x and “homogeneous of degree m
in \" + some “differentiability” condition in 7 (difference operators).
Note that o(x, (0,w)) is a scalar and not an operator.

@ Semi-classical pseudodifferential operators: Let 0 € S™°(G), e « 1

Op_(0)f(x) = co/étr (wja(x,e-A)?(A)) IA[dA.

[Bahouri, FK & Gallagher, 12], [Fischer & Ruzhansky, 16], [FK & Fischer, 18].
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The kernel of a semi-classical pseudodifferential operator.

For f € §(G),
Op.(0)f(x) = oo /A Tr (mpo(x, - A)FF(N)) [A|9 dA
G
_ coe*Q/ Ty (wgs_l(y lx)a(x,/\)) F(y)IN? dX dy
GxG

= [0 .

The convolution kernel of Op_(c) is obtained by scaling from x,(-),
KE(2) = e Qky (0.12)

with
kx(z) = c [ Tr (m20(x,\)) [A|9dX ie. F(rx)(N) = o(x, A).
¢
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Action on L?(G)

The set Ay is the set of operator-valued symbols o(x, A\) € L(# ) such that

a(x,A) = Fre(N) = /GHX(Z)(TI'?)*O'Z,
where x — kx(y) is in C2°(G, S(G)).

Proposition

The set Ag is an algebra and 3C > 0, Vo € Ag, Ve > 0,

0P ()l £(12(6)) < € / sup |kx(2)|dz.
G xeG

Proofs  [00.(0)r()| = [ )ity )]
< / F()] sup 5,y )] dy = ] sup |5, (1)
G x1€G x1€G

Then Young conv. inequ. and || sup,c¢ |55()llli(6) = | supxec [x()lll1(6)



Egorov Theorem [FK, Fischer 19]

Let ¢ € L?(G) and § € C2°(R), o € A with ¢ = 0 close to A = 0 and

[t EQAG

Qs(t) = e /7B op (o) =

o IF[o HN] # 0, then [ 0(6) (Q3(e)i )izt = O™ D)),
@ If [;,H\)] =0, o = N,oM,

Q@ ifr<(0,2), /e/(t)(og(t)w,z;;) dt = O(emn(7=2)|14)||2),
R
Q if 7 =2, for all s € R (transport)

[ o0 @steyv.wyde = [ oe+5) (@ (110.) e + OCel 0P,

@ if 7 > 2, for all s € R (invariance)

/9 t)), ) dt = /9 QE I) I)) dt—i—O(Emm (1,2=7 ||L7H2)

Above, ®3(0) =0 (Exp(zﬁildz()‘ s)x, A)
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Proof of the Egorov Theorem

One writes

% (0p2 ()67 (£), 47(8)) = (op- ([ HOD)w< (£), 4< (1))
e (opo (V. (V)o)ee(£), w°(8)) — €% (op=(Bgo) (£)u°(£), ¥°(1)) -

2 facts:

@ There exists 01 € A such that

V.M (V)o = [o1, H)].

@ For this o1, one has

1 2n+d
m, (v.nA(V)a1 - 2A(;(7> n, — g‘“;‘ M,ZMe M,
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Proof of the Egorov Theorem

One writes for o = IN,ol1,

= [ 60615 (op. (o) (), 07(2)) o =

= o (ops (22&6’“ Z0on )wf(t) wf(r))

2 facts:
@ There exists 01 € A such that

V.M (V)o = [o1, HN)].

@ For this o7, one has

1 2
n, (V.ﬂ’\(V)(fl - 2Aga> M, = %Mdnnz“)aﬂn.
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Semi-classical measures and Schrodinger equation
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Existence and structure of semi-classical measures

Let M (G x é) be the set of pairs (I, ~y) consisting of a positive Radon
measure v on G x G and a family of positive trace 1 operators '(x, A) on H.

Proposition

Let ()5(t)) be a bounded family in L>°(R, L2(R9)). There exist e, — 0 and

k—+o00

t > Medye € L®(R, M (G x G)) such that for all § € L}(R) and o € Aq,

/ 0(t) (Op.(0)y°(t), °(t)) dt — l _O(t)Tr (o(x, A)Te(x, ) dve(x, A)dt.
. k7 JRXxGXG

Remark:
1. T':dv; has two parts:

e a non commutative part described by an operator valued measure on
G x 3\ {0} (Hx = L2(pn))-
e an Euclidean part described by a (scalar) positive Radon measure on v*

(H = C).



Existence and structure of semi-classical measures

Let (5(t)) be a bounded family in L>(R, L2(R9)). There exist ¢ o 0and
—

+o0

t i Tedvye € L°(R, M7 (G x G)) such that for all € [X(R) and o € A,

/H(t) (Op. (o) (t), (1)) dtekjo . cA;Q(t)Tr(U(x., AMe(x, ) dye(x, N)dt.

Remark:

2. Link with the weak limit of the energy density:
If ||(—62AG)%¢8||L2(G) < C, then V¢ € C°(G), 6 € C(R),

Iimsup/H(t)/G(,é(x)|(/;€k(t,x)|2dxdt:‘/p . 6f)(?.‘)q’)(x)Tr(r(x,/\))dv(x,/\)

k—+o00
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A few words about the proof...

@ Difficulty : No Garding's inequality...
— Use a “C*-algebra" approach.

@ The key: Consider the C*-algebra A obtained by completion of Ay with

o= sup AHU(X',TF)HE(HH'
(x,m)eGXG

The set of the states of A coincide with M{ (G x G).

@ The arguments: The quantities
65(0) = (OPE(UW&J/)E)

satisfy:

@ For any 0 € Ay, £.(0) is bounded and there exists (¢x(c))ken such
that /., (»)(0, ) has a limit £(o).

© Using the separability of 4y and a diagonal extraction, one finds
(ek)ken such that for all o € A, (£, (0))ken has a limit £(o).

© The map o+ {(0) extends to A and is a state of A (¢(c*c) > 0).
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Semi-classical measures and Schrodinger equation

Consider solutions of the Schrodinger equation
ieT 0" = —*Agp, °(0) = 5.
Let I';dv; be the semi-classical measure of a family °(t).
@ The non-commutative part

Theorem (FK & Fischer 2019)

(i) For dyt-a. a. (x,A) € G x G and a.a. tER,

Fe(6A) =) Toe(x,A) with Tpe(x,A) =M, e(x, M),
neN

where T, are spectral projections of H()\) for the eigenvalues |\|(2n + d).

(||) = If7- (S (0,2), 0t (rmt(x, A)d’\/t) = O,
- T =2, Toe(x, A)dye(x, A) satisfies (9; — FELZV) (Tne(x, \)dve) = 0

- ifr>2, ZM (T, (x,\)dv:) = 0 (invariance).
Z() ¢ 3 is the vector corresponding to \ € 3*.

v
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Semi-classical measures and Schrodinger equation

@ The non-commutative part

@ The Euclidean part

Theorem (FK & Fischer 2019)

(i) Above X =0, set ds(x,w) = T¢(x, (0,w))dv:(x, (0,w))

- ifte (0, 1), 3{@}(X, (qu)) = 0.,
- ifr=1,(0: —w- V)si(x,w) =0 (transport),
- ifT>1, w- V¢ =0 (invariance).

Proof: Same strategy than the proof of Egorov Theorem + limit ¢ — 0 +
identification of each part of the measure.
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Conclusion

@ We have extended the microlocal/semiclassical approach to the setting of
graded Lie groups.

@ In the non-semiclassical framework, one obtains (without pain...)
compensated compactness theorems ([Baldi, Franchi, 13], [Baldi, Franchi,
Tchou & Tesi 10], [FK & Fischer 18])

@ Application to the analysis of eigenfunctions of (complicated)
sub-Laplacians ?
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Thank you for your attention !
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