Recent progress on the Fried conjecture. Workshop *Recent developments in microlocal analysis*, MSRI

Nguyen Viet Dang¹ with Yann Chaubet, Colin Guillarmou, Gabriel Rivière, Shu Shen

¹Université Lyon 1

イロト イポト イヨト イヨト

Motivation.

Algebra	Topology	Dynamics
$\dim(V)$	Euler $\chi(V, d)$	zeros vector fields
		$\sum_{c \in Crit(V)} (-1)^{ind_V(c)}$
trace(T)	Lefschetz $\mathcal{L}(T)$	fixed points of maps
	$\sum_{i=0}^{\dim(M)} (-1)^{i} Tr(T _{H^{i}(M)})$	$\sum_{x=T(x)} \operatorname{ind}_T(x)$
determinant	Torsion $ au$	periodic orbits flows
		$\prod_{\gamma \in \ prime} det \left(\mathit{Id} - ho(\gamma) \Delta(\gamma) ight)^{(-1)^{ind(\gamma)}}$

2

イロン イロン イヨン イヨン

Geometric context.

(M, θ **)**, dim(M) = 2d + 1, θ contact 1-form : $\theta \wedge d\theta^{\wedge d}$ volume form. Ex : S^*M .

イロト イポト イヨト イヨト 二日

Geometric context.

- **(** M, θ **)**, dim(M) = 2d + 1, θ contact 1-form : $\theta \wedge d\theta^{\wedge d}$ volume form. Ex : S^*M .
- **3** X Reeb field, $\theta(X) = 1$. Assume X **Anosov** i.e. $TM = E_s \oplus E_u \oplus \langle X \rangle$, (E_s, E_u) called stable, unstable bundles $\exists C, \lambda > 0$ s.t. $\forall t \ge 0$:

 $\|de^{tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_s, \ \|de^{-tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_u.$

Ex : X generator of the geodesic flow for metric g of negative curvature.

イロン イロン イヨン イヨン 三日

Geometric context.

- **(** M, θ **)**, dim(M) = 2d + 1, θ contact 1-form : $\theta \wedge d\theta^{\wedge d}$ volume form. Ex : S^*M .
- **2** X Reeb field, $\theta(X) = 1$. Assume X **Anosov** i.e. $TM = E_s \oplus E_u \oplus \langle X \rangle$, (E_s, E_u) called stable, unstable bundles $\exists C, \lambda > 0$ s.t. $\forall t \ge 0$:

 $\|de^{tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_s, \ \|de^{-tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_u.$

Ex : X generator of the geodesic flow for metric g of negative curvature.

Solution $\rho = e^{\langle \alpha, . \rangle} : \pi_1(M) \mapsto \mathbb{C}^*$, $[\alpha] \in H^1(M, \mathbb{R})$.

イロト 不得下 イヨト イヨト 二日

Geometric context.

- **(** M, θ **)**, dim(M) = 2d + 1, θ contact 1-form : $\theta \wedge d\theta^{\wedge d}$ volume form. Ex : S^*M .
- ② X Reeb field, θ(X) = 1. Assume X Anosov i.e. TM = E_s ⊕ E_u ⊕ ⟨X⟩, (E_s, E_u) called stable, unstable bundles ∃C, λ > 0 s.t. ∀t ≥ 0:

$$\|de^{tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_s, \|de^{-tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_u$$

Ex : X generator of the geodesic flow for metric g of negative curvature. Representation $\rho = e^{\langle \alpha, . \rangle} : \pi_1(M) \mapsto \mathbb{C}^*$, $[\alpha] \in H^1(M, \mathbb{R})$. α a closed 1-form, then $\rho(\gamma) = \exp\left(\int_{\gamma} \alpha\right)$ is a **character** on $\pi_1(M)$: $\rho(\gamma_1 + \gamma_2) = \exp\left(\int_{\gamma_1 \circ \gamma_2} \alpha\right) = \exp(\int_{\gamma_1} \alpha) \exp(\int_{\gamma_2} \alpha) = \rho(\gamma_1)\rho(\gamma_2)$ hence $\rho : \pi_1(M) \mapsto \mathbb{C}^*$.

イロン イロン イヨン イヨン 三日

Riemann zeta
$$\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s}).$$

2

イロン イ団 とくほと くほとう

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \mathsf{Primes} \\ \text{factorized}}} (1 - p^{-s}).$ Dirichlet L-function, $\chi : \mathbb{N} \mapsto \mathbb{S}^1$ character, functions of (s, χ) :

$$L(s, \chi) = \prod_{p \in \text{Primes}} (1 - \chi(p)p^{-s}).$$

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s}).$

Dirichlet L-function, $\chi:\mathbb{N}\mapsto\mathbb{S}^1$ character, functions of (s,χ) :

$$L(s,\chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s}).$$

Using (X, ρ) , we can form the twisted Ruelle zeta function (dynamical L functions)

$$\zeta_{\boldsymbol{X},\rho}(\boldsymbol{s}) = \prod_{\boldsymbol{\gamma}\in\mathcal{P}} \left(1-\rho(\boldsymbol{\gamma})\boldsymbol{e}^{-\boldsymbol{s}\ell(\boldsymbol{\gamma})}\right)$$

 \mathcal{P} prime periodic orbits of e^{tX} , $\ell(\gamma)$ period of γ .

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s}).$

Dirichlet L-function, $\chi:\mathbb{N}\mapsto\mathbb{S}^1$ character, functions of (s,χ) :

$$L(s,\chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s}).$$

Using (X, ρ) , we can form the twisted Ruelle zeta function (dynamical L functions)

$$\zeta_{X,\rho}(s) = \prod_{\gamma \in \mathcal{P}} \left(1 - \rho(\gamma) e^{-s\ell(\gamma)}\right)$$

 \mathcal{P} prime periodic orbits of e^{tX} , $\ell(\gamma)$ period of γ .

Example

On
$$\mathbb{S}^1$$
 of length ℓ , flow ∂_{θ} , u generator of $\pi_1(M)$, monodromy $\rho(u) \in \mathbb{C}^*$,
 $\zeta_{X,\rho}(s) = (1 - \rho(u)e^{-s\ell})$.

Nguyen Viet Dang (Université Lyon 1)

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

э

イロン イヨン イヨン イヨン

Some questions on $\zeta_{X,\rho}$.

- $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :
 - Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

• Topological content of ζ , questions by Bowen, Fried.

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

• Topological content of ζ , questions by Bowen, Fried.

Both problems deeply related.

イロト 不得 トイヨト イヨト

Topological content of ζ .

Simple to state :

Theorem (Dyatlov-Zworski, Hadfield with boundary)

For a surface ${\cal M}$ of variable negative curvature, X generates the geodesic flow on $S^*{\cal M}$ then :

$$\zeta_{X,ld}(s) = \prod_{\gamma} (1 - e^{-s\ell(\gamma)}) = s^{2g-2} \left(c + \mathcal{O}(s) \right) \tag{1}$$

(a)

g genus of \mathcal{M} . In particular, the length spectrum determines the genus.

Topological content of ζ .

Simple to state :

Theorem (Dyatlov-Zworski, Hadfield with boundary)

For a surface ${\cal M}$ of variable negative curvature, X generates the geodesic flow on $S^*{\cal M}$ then :

$$\zeta_{X,ld}(s) = \prod_{\gamma} (1 - e^{-s\ell(\gamma)}) = s^{2g-2} \left(c + \mathcal{O}(s) \right) \tag{1}$$

(a)

g genus of \mathcal{M} . In particular, the length spectrum determines the genus.

Dynamical meaning of zeroes and poles of $\zeta_{X,\rho}$?

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$?

2

・ロト ・四ト ・ヨト ・ヨト

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$? Poles $(\det(A + s)^{-1})$ where $\det(A + s)^{-1}$ plays role ζ .

æ

・ロト ・個ト ・ヨト ・ヨト

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$? Poles $(\det(A + s)^{-1})$ where $\det(A + s)^{-1}$ plays role ζ . Other method : poles of $z \mapsto \int_0^\infty e^{-ts} \langle \Psi_2, e^{-tA}\Psi_1 \rangle dt = \sum_{\lambda \in \sigma(A)} \frac{1}{\lambda + s} \langle \Psi_2, \Pi_\lambda(\Psi_1) \rangle$ for all Ψ_1, Ψ_2 test vectors and Π_λ projector on eigenspaces.

イロト 不得 トイヨト イヨト

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$? Poles $(\det(A + s)^{-1})$ where $\det(A + s)^{-1}$ plays role ζ . Other method : poles of $z \mapsto \int_0^\infty e^{-ts} \langle \Psi_2, e^{-tA}\Psi_1 \rangle dt = \sum_{\lambda \in \sigma(A)} \frac{1}{\lambda + s} \langle \Psi_2, \Pi_\lambda(\Psi_1) \rangle$ for all Ψ_1, Ψ_2 test vectors and Π_λ projector on eigenspaces. Zeroes and poles of $\zeta_{X,\rho}$ have **deep dynamical meaning** as Pollicott–Ruelle resonances.

Definition (Dynamical correlators)

Let Ψ_1, Ψ_2 two test forms, $u(t) = e^{-tX*}\Psi_1$ solves transport equation by Anosov flow $\partial_t u(t) + \mathcal{L}_X u(t) = 0$ with Cauchy data $u(0) = \Psi_1$.

イロト 不得下 イヨト イヨト 二日

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$? Poles $(\det(A + s)^{-1})$ where $\det(A + s)^{-1}$ plays role ζ . Other method : poles of $z \mapsto \int_0^\infty e^{-ts} \langle \Psi_2, e^{-tA}\Psi_1 \rangle dt = \sum_{\lambda \in \sigma(A)} \frac{1}{\lambda + s} \langle \Psi_2, \Pi_\lambda(\Psi_1) \rangle$ for all Ψ_1, Ψ_2 test vectors and Π_λ projector on eigenspaces. Zeroes and poles of $\zeta_{X,\rho}$ have **deep dynamical meaning** as Pollicott–Ruelle resonances.

Definition (Dynamical correlators)

Let Ψ_1, Ψ_2 two test forms, $u(t) = e^{-tX*}\Psi_1$ solves transport equation by Anosov flow $\partial_t u(t) + \mathcal{L}_X u(t) = 0$ with Cauchy data $u(0) = \Psi_1$.

$$C(\Psi_1,\Psi_2,t) = \int_M \Psi_2 \wedge \left(e^{-tX*}\Psi_1\right)$$
(2)

イロト 不得下 イヨト イヨト 二日

Analogy : diagonalizable matrix A, spectrum $-\sigma(A)$? Poles $(\det(A + s)^{-1})$ where $\det(A + s)^{-1}$ plays role ζ . Other method : poles of $z \mapsto \int_0^\infty e^{-ts} \langle \Psi_2, e^{-tA}\Psi_1 \rangle dt = \sum_{\lambda \in \sigma(A)} \frac{1}{\lambda + s} \langle \Psi_2, \Pi_\lambda(\Psi_1) \rangle$ for all Ψ_1, Ψ_2 test vectors and Π_λ projector on eigenspaces. Zeroes and poles of $\zeta_{X,\rho}$ have **deep dynamical meaning** as Pollicott–Ruelle resonances.

Definition (Dynamical correlators)

Let Ψ_1, Ψ_2 two test forms, $u(t) = e^{-tX*}\Psi_1$ solves transport equation by Anosov flow $\partial_t u(t) + \mathcal{L}_X u(t) = 0$ with Cauchy data $u(0) = \Psi_1$.

$$C(\Psi_1,\Psi_2,t) = \int_M \Psi_2 \wedge \left(e^{-tX*}\Psi_1\right)$$
(2)

・ロト ・回ト ・ヨト ・ヨト

Definition (Pollicott-Ruelle resonances)

Poles of the Laplace transformed correlators

$$\mathcal{LC}(\Psi_1,\Psi_2,.)(s) = \int_0^\infty e^{-st} C(\Psi_1,\Psi_2,t) dt.$$

Capture long time behaviour of the dynamics.

Nguyen Viet Dang (Université Lyon 1)

э

Transport equation with potential.

Cheated in previous slides, implement representation ρ !

A representation $\rho = e^{\langle \alpha, . \rangle} : \gamma \in \pi_1(M) \mapsto e^{\int_{\gamma} \alpha} \in \mathbb{C}^* \Leftrightarrow M \times \mathbb{C} \mapsto M$ with flat connection $\nabla = d + \alpha, \alpha$ closed 1-form. Around loop γ , representation $\rho(\gamma) =$ parallel transport with ∇ along γ

・ロン ・四 と ・ ヨ と ・ ヨ と

Transport equation with potential.

Cheated in previous slides, implement representation ρ !

A representation $\rho = e^{\langle \alpha, . \rangle} : \gamma \in \pi_1(M) \mapsto e^{\int_{\gamma} \alpha} \in \mathbb{C}^* \Leftrightarrow M \times \mathbb{C} \mapsto M$ with flat connection $\nabla = d + \alpha$, α closed 1-form. Around loop γ , representation $\rho(\gamma) =$ parallel transport with ∇ along γ

Zeroes, poles of $\zeta_{X,\rho}(s)$ related to asymptotics of u(t, .) sol. of transport equation

イロン イロン イヨン イヨン 三日

Topology in the kernel.

Theorem (D-Rivière)

For X Anosov or Morse–Smale, $C^{k}(0)$ currents of degree k s.t. $(\mathcal{L}_{X} + \alpha(X))^{p} u = 0$ for some $p \in \mathbb{N}$ and $WF(u) \subset \mathcal{D}'_{E^{*}_{u}}$. $(C(0), d + \alpha)$ chain complex is quasi–isomorphic to the De Rham complex. In particular, $\underbrace{\dim (C^{k}(0))}_{\dim of \ kernel \ on \ k-forms} \ge \underbrace{b_{k}}_{Betti}$.

<ロ> (日) (日) (日) (日) (日)

Abstract torsion of chain complexes.

Example

 $T : E \mapsto F$ isomorphism, corresponding complex $0 \mapsto E \mapsto F \mapsto 0$. How from T do we get numbers ?

・ロト ・回ト ・ヨト ・ヨト

Abstract torsion of chain complexes.

Example

 $T : E \mapsto F$ isomorphism, corresponding complex $0 \mapsto E \mapsto F \mapsto 0$. How from T do we get **numbers**? Choose volume elements $\mu_1 \in \Lambda^{top}E, \mu_2 \in \Lambda^{top}F$ then $T_*\mu_1 = \lambda\mu_2$ where λ number. Torsion generalizes determinants for **based** chain complexes.

イロト イポト イヨト イヨト

Abstract torsion of chain complexes.

Example

 $T : E \mapsto F$ isomorphism, corresponding complex $0 \mapsto E \mapsto F \mapsto 0$. How from T do we get **numbers**? Choose volume elements $\mu_1 \in \Lambda^{top}E, \mu_2 \in \Lambda^{top}F$ then $T_*\mu_1 = \lambda\mu_2$ where λ number. Torsion generalizes determinants for **based** chain complexes.

In general, for an **acyclic** cochain complex (C^{\bullet}, d)

$$0\mapsto C^{0}\stackrel{d}{\mapsto} C^{1}\mapsto\ldots\stackrel{d}{\mapsto} C^{N}\mapsto 0$$

 $d \circ d = 0$, Im(d) = ker(d), choosing a volume element [b] in C^{\bullet} associates a number

$$\tau(C^{\bullet}, d) = \prod_{i=0}^{N-1} |\det_{C^{i}_{coex} \mapsto C^{i+1}_{ex}}(d)^{(-1)^{i}}|.$$
(3)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recipe, on M with closed α , choose Morse function f. Morse complex generated by Crit(f), twisted by $\rho = e^{\langle \alpha, \cdot \rangle}$. Differential

$$\partial a = \sum_{\gamma: a \mapsto b} \pm \underbrace{e^{\int_{\gamma} \alpha}}_{\text{twisting}} b$$
 (4)

イロン イ団と イヨン イヨン

sum runs over instantons connecting (a, b) s.t. ind(b) = ind(a) + 1.

Theorem

 $M \ C^{\infty}$ manifold, ρ unitary reps s.t. twisted Morse complex $(C_{f}^{\bullet}, d_{\rho})$ acyclic. Then $\tau_{R}(\rho) := \tau(C_{f}^{\bullet}, d_{\rho})$ does not depend on f. Topological invariant of (M, ρ) .

Back to our friend \mathbb{S}^1 .

Example

Acyclicity. On \mathbb{S}^1 , $\alpha \in i\mathbb{R}$. Differential $d + \alpha d\theta$ corresponding to unitary reps $\rho : \gamma \mapsto e^{\int_{\gamma} \alpha d\theta} \in \mathbb{S}^1$.

э

・ロト ・回ト ・ヨト ・ヨト

Back to our friend \mathbb{S}^1 .

Example

Acyclicity. On \mathbb{S}^1 , $\alpha \in i\mathbb{R}$. Differential $d + \alpha d\theta$ corresponding to unitary reps $\rho : \gamma \mapsto e^{\int_{\gamma} \alpha d\theta} \in \mathbb{S}^1$. Then $\partial_{\theta} u + \alpha u = 0$ with u(0) = u(1) solution $u(\theta) = u(0)e^{\alpha\theta}$. But periodicity and $e^{\alpha} \neq 1 \implies u = 0$. Finally ker $(\partial_{\theta} + \alpha) = \{0\} \implies$ acyclicity of $d + \alpha d\theta$. Torsion. \mathbb{S}^1 North South dynamics. Basis (a, b). Differential $\partial a = e^{\frac{\alpha}{2}}b - e^{-\frac{\alpha}{2}}b = (e^{\frac{\alpha}{2}} - e^{-\frac{\alpha}{2}})b \implies |\det(\partial)| = |1 - e^{\alpha}|.$

$$\tau_{\mathcal{R}}(\rho) = |1 - e^{\alpha}| = |\zeta_{X,\rho}(0)|.$$
(5)

イロト 不得 とくほと くほとう ほ

Fried

・ロト ・個ト ・ヨト ・ヨト ・ヨ

・ロト ・個ト ・ヨト ・ヨト 三日

The Fried conjecture.

Relate $|\zeta_{X,\rho}(0)|$ to $\tau_R(\rho)$.

2

◆□> ◆圖> ◆臣> ◆臣>

The Fried conjecture.

Relate $|\zeta_{X,\rho}(0)|$ to $\tau_R(\rho)$.

Theorem

() when $M = S^*M$ for hyperbolic M, ρ unitary, then Fried(1986) showed

$$\tau_R(\rho) = |\zeta_{X,\rho}(\mathbf{0})|^{(-1)^{d-1}}.$$
(6)

- Section 2018 Symmetric spaces by Moscovici-Stanton, Shen(2018)
- Sanchez–Morgado(1996) for X analytic Anosov in 3d.
- O-Guillarmou-Rivière-Shen, if for some flat connection ∇ and Anosov X₀, we have ker(X₀) = {0} then

$$\zeta_{X,\rho} = \zeta_{X_0,\rho} \tag{7}$$

イロト 不得 トイヨト イヨト

for all X near X_0 . In particular, the Fried conjecture holds true for X Anosov in 3d if $b_1(M) > 0$ and in 5d near geodesic flows of hyperbolic manifolds.

What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might be ill-defined.

2

イロン イ団 とくほと くほとう

What if ρ acyclic but ker(X) \neq {0}? $\zeta_{X,\rho}(0)$ might be ill-defined.

To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

<ロ> (日) (日) (日) (日) (日)

What if ρ acyclic but ker(X) \neq {0}? $\zeta_{X,\rho}(0)$ might be ill-defined.

To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

For Morse-Smale, distinguished basis of currents of integration on unstable manifolds.

What if ρ acyclic but ker(X) \neq {0}? $\zeta_{X,\rho}(0)$ might be ill-defined.

To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

For Morse-Smale, distinguished basis of currents of integration on unstable manifolds.

Proposition (Lepage 1946)

 $\text{isomorphisms } \mathrm{L}^k: \varphi \in \Omega^k(\mathcal{M}) \cap \ker(\iota_X) \mapsto \varphi \wedge d\theta^k \in \Omega^{2d-k}(\mathcal{M}) \cap \ker(\iota_X), \forall k \leqslant d$

Definition

Every k-form $\varphi = f \land \theta + g, (f,g) \in ker(\iota_X)$ and chirality Γ unique involution satisfying :

$$\Gamma \varphi = \mathcal{L}^{d-k} g \wedge \theta + \mathcal{L}^{d-k+1} f, k \leqslant d.$$
(8)

What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might be ill-defined.

To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

For Morse-Smale, distinguished basis of currents of integration on unstable manifolds.

Proposition (Lepage 1946)

 $\text{isomorphisms } \mathrm{L}^k: \varphi \in \Omega^k(\mathcal{M}) \cap \ker(\iota_X) \mapsto \varphi \wedge d\theta^k \in \Omega^{2d-k}(\mathcal{M}) \cap \ker(\iota_X), \forall k \leqslant d$

Definition

Every k-form $\varphi = f \land \theta + g, (f,g) \in ker(\iota_X)$ and chirality Γ unique involution satisfying :

$$\Gamma \varphi = \mathcal{L}^{d-k} g \wedge \theta + \mathcal{L}^{d-k+1} f, k \leq d.$$
(8)

Key observation : if X is contact Anosov, canonical involution Γ on C(0).

Nguyen Viet Dang (Université Lyon 1)

Yann Chaubet.

2

The main Theorem.

Proposition (Braverman-Kappeler)

 Γ -invariant basis [b] of ker_{gen}(X) then τ (ker_{gen}(X), $d + \alpha$) does not depend on [b], only on $\Gamma \implies$ Intrinsic finite dim torsion $\tau_{\Gamma}(X)$.

イロン イヨン イヨン イヨン

The main Theorem.

Proposition (Braverman-Kappeler)

 Γ -invariant basis [b] of ker_{gen}(X) then τ (ker_{gen}(X), $d + \alpha$) does not depend on [b], only on $\Gamma \implies$ Intrinsic finite dim torsion $\tau_{\Gamma}(X)$.

Theorem (Chaubet–D)

 (\mathcal{M}, g) hyperbolic of odd dimension d. X_0 generates geodesic flow on $S^*\mathcal{M}$. For any contact Anosov flow X path connected to X_0 among contact Anosov flows, ρ acyclic unitary reps :

$$|\zeta_{X,\rho}(s)| = |s^{m}| \underbrace{\tau_{R}(\rho)}_{R-\text{torsion}} \left(|\frac{\tau_{\Gamma}(X_{0})}{\tau_{\Gamma}(X)}| + O(s) \right)$$
(9)

m depends on (X, ρ) .

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

æ

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

Example

On \mathbb{S}^1 , representation variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$.

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

Example

On \mathbb{S}^1 , representation variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$.

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

Example

On \mathbb{S}^1 , representation variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$. Choose Euler structure $\mathfrak{e} \in \mathbb{Z}$, $u \in \mathbb{C}^* \setminus \{1\} \mapsto \tau_{\mathfrak{e}}(u) = u^{\mathfrak{e}}(1-u)$ is holomorphic. Observe that for $u \in \mathbb{S}^1 \setminus \{1\}$, acyclic unitary reps, $|\tau_{\mathfrak{e}}(u)| = |1-u| = \tau_R(u)$ hence $\tau_{\mathfrak{e}}$ extends and refines τ_R .

イロト 不得 トイヨト イヨト

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

Example

On \mathbb{S}^1 , representation variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$. Choose Euler structure $\mathfrak{e} \in \mathbb{Z}$, $u \in \mathbb{C}^* \setminus \{1\} \mapsto \tau_{\mathfrak{e}}(u) = u^{\mathfrak{e}}(1-u)$ is holomorphic. Observe that for $u \in \mathbb{S}^1 \setminus \{1\}$, acyclic unitary reps, $|\tau_{\mathfrak{e}}(u)| = |1-u| = \tau_R(u)$ hence $\tau_{\mathfrak{e}}$ extends and refines τ_R .

Turaev resolved ambiguities of τ by fixing Euler structure $\mathfrak{e} \in Eul(M)$ = homotopy class of non singular vector fields.

イロト 不得 トイヨト イヨト

Fix ambiguities in τ_R , consider torsion as holomorphic functions of nonunitary reps.

Example

On \mathbb{S}^1 , representation variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$. Choose Euler structure $\mathfrak{e} \in \mathbb{Z}$, $u \in \mathbb{C}^* \setminus \{1\} \mapsto \tau_{\mathfrak{e}}(u) = u^{\mathfrak{e}}(1-u)$ is holomorphic. Observe that for $u \in \mathbb{S}^1 \setminus \{1\}$, acyclic unitary reps, $|\tau_{\mathfrak{e}}(u)| = |1-u| = \tau_R(u)$ hence $\tau_{\mathfrak{e}}$ extends and refines τ_R .

Turaev resolved ambiguities of τ by fixing Euler structure $\mathfrak{e} \in Eul(M)$ = homotopy class of non singular vector fields.

 $Rep = Hom(\pi_1(M), \mathbb{C}^*), \ \rho \in Rep_0 \mapsto \tau_{\mathfrak{e}}(\rho) \in \mathbb{C}$ holomorphic function on the acyclic part $Rep_0 \subset Rep$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definition (Hutchings, Burghelea-Haller)

 (X_0, X_1) pair of vector fields, $CS(X_0, X) \in H_1(M, \mathbb{Z})$ is a defect measuring the obstruction to deform continuously X_0 into X_1 .

Example

Try to deform ∂_{θ} continuously to $-\partial_{\theta}$.

・ロト ・個ト ・ヨト ・ヨト

Second main Theorem

\mathcal{A} =space of all Anosov vector fields, Rep_0 =acyclic reps in $Hom(\pi_1(M), \mathbb{C}^*)$.

2

イロン イ団 とくほと くほとう

Second main Theorem

 \mathcal{A} =space of all Anosov vector fields, Rep_0 =acyclic reps in $Hom(\pi_1(M), \mathbb{C}^*)$.

Theorem (Chaubet-D)

 X_0 contact Anosov. For every **connected** open subsets $\mathcal{U} \subset \operatorname{Rep}_0$ and $\mathcal{V} \subset \mathcal{A}$, $\exists C \text{ s.t. for}$ every vector field $X \in \mathcal{V}$ and every $e^{\langle ., \alpha \rangle} \in \mathcal{U}$,

$$\zeta_{X,e^{\langle \cdot,\alpha\rangle}}(s) = s^m C_{\tau_{\mathfrak{e}_X}}\left(e^{\langle \cdot,\alpha\rangle}\right)_{\underbrace{\mathsf{Turaev torsion}}} \underbrace{e^{\langle CS(X_0,X),\alpha\rangle}}_{\mathsf{defect}}(1+O(s))$$

where the constant C does not depend on $X, e^{\langle ., \alpha \rangle}$.

Idea of proof.

• introduce dynamical torsion :

$$\tau_{X}(\rho) = \underbrace{\tau_{T}(X)}_{\text{correction}} \times \underbrace{\lim_{s \to 0^{+}} s^{-m} \zeta_{X,\rho}(s)}_{\text{renormalized } \zeta}$$

where $\tau_{\Gamma}(X) = \text{torsion of kernel } C(0)$ for chirality Γ .

- Prove $\rho \mapsto \tau_X(\rho)$ holomorphic and $X \mapsto \tau_X(\rho)$ is C^1 .
- Show that $\partial_X \log \tau_X(\rho) = 0$ "topological invariant" and differentiate on Rep

$$\frac{d}{dt}\log\tau_X(\rho e^{t\alpha})|_{t=0}=Tr_s^\flat\left(\alpha K_\varepsilon\right)$$

where $[d, K_{\varepsilon}] = e^{-\varepsilon \mathcal{L}_X}$.

• Compare $\frac{d}{dt} \log \tau_X(\rho e^{t\alpha})|_{t=0}$ with log derivative of Turaev's torsion $\frac{d}{dt} \log \tau_{\mathfrak{e}}(\rho e^{t\alpha})|_{t=0}$ yields the result.

ヘロト 人間ト 人団ト 人団ト

Thanks for your attention !

2

・ロト ・回ト ・ヨト ・ヨト